Малый ледниковый период. Как климат изменил историю, 1300–1850 — страница 13 из 50

Подобные исторические документы позволяют выявить небольшие погодные колебания от десятилетия к десятилетию, но как эти колебания связаны с общим изменением климата – вопрос для будущих исследований. В последние годы для сопоставления показателей, рассчитанных на основе исторических источников, с результатами анализа годичных колец деревьев и другими научными данными используются статистические методы. Благодаря этому мы знаем, например, что в XVI веке в Центральной Европе все времена года были холоднее, чем в период с 1901 по 1960 год, при этом зимы и весны были холоднее примерно на 0,5 °C, а в осенние месяцы выпадало примерно на 5 % больше осадков. С 1586 по 1595 год в этом регионе установилась почти непрерывная череда холодных зим, когда температура воздуха была примерно на 2 °C ниже средних значений начала XX века. Те же данные свидетельствуют о том, что в Швейцарии десятилетия с 1691 по 1700 год и с 1886 по 1895 год были самыми холодными за последние пять веков.

При всем богатстве и разнообразии архивных материалов нам приходится во многом полагаться на научные данные для получения информации о климате малого ледникового периода во все годы. Эту информацию частично дают ледяные керны, добываемые из глубины гренландских льдов, антарктического ледяного щита (включая керны с Южного полюса) и горных ледников вроде ледника Куэлкайя в Перуанских Андах. Изучение ледяных кернов сопряжено с серьезными техническими трудностями. Дело в том, что под воздействием сложных процессов годовые снежные пласты погружаются все глубже и глубже в ледник, пока наконец не спрессовываются в лед. Ученым приходится изучать различные текстуры, характерные для летнего и зимнего льда, чтобы восстановить историю осадков в далеком прошлом. Изменения количества выпадавшего снега особенно важны, поскольку они дают ключевую информацию о скорости потепления или похолодания во время внезапных климатических сдвигов.

Два керна из гренландского ледяного щита, известные как GISP-1 и GISP-2, представляют особый интерес для исследователей малого ледникового периода. Годовые слои керна GISP-2 соотносятся с календарными годами с погрешностью ±1 %, что делает его исключительно полезным для датировки изменений температуры, которые, в свою очередь, выявляются изотопным методом – по изменению относительного содержания во льду дейтерия (D) от года к году или даже от сезона к сезону. Его понижения свидетельствуют о низких температурах – наподобие таких, какие установились в XIV веке в Гренландии, когда там выдались самые холодные зимы за последние 700 лет. Реконструкция климата при помощи ледяных кернов открывает широкие перспективы для изучения кратковременных циклов потеплений и похолоданий, повлиявших на средневековые поселения норвежцев в Гренландии.

До 1960-х исследования годичных колец деревьев проводились в основном на юго-западе США. Астроном Эндрю Дуглас вписал свое имя в историю науки, определив возраст древних поселений индейцев по годичным кольцам в высохших потолочных балках. С тех пор с юго-запада США были получены тысячи образцов годичных колец, так что сегодня ученые могут проследить распространение сильных засух по всему региону год за годом в течение тысячи лет. Поначалу методы датировки по годичным кольцам применялись только в районах с выраженными сезонами осадков, но теперь они настолько совершенны, что у нас есть высокоточные схемы колец немецких и ирландских дубов по меньшей мере за 8000 лет.

В настоящее время реконструкция климата по годичным кольцам деревьев ведется более чем в 380 местах по всему Северному полушарию. У нас уже есть первые графики температурных колебаний по годам и десятилетиям вплоть до 1400 года и ранее, с весьма надежными показателями после 1600 года[57]. Оценки температур, полученные путем статистического регрессионного анализа показаний современных приборов, а также выведенные из исторических и прочих источников, крайне важны для выяснения того, насколько теплым был конец ХХ века по сравнению с более ранними временами.

Крупные извержения вулканов, подобные тому, что разрушило древние города Геркуланум и Помпеи в 79 году н. э., – это впечатляющие и зачастую катастрофические события. О крупнейших из них можно узнать по структуре годичных колец деревьев и мелкой пыли в ледяных кернах. Извержения вулканов приводят к серьезным климатическим последствиям из-за выбросов мелких частиц пепла, которые годами остаются в атмосфере. Гипотезы о связи извержений с погодой существуют уже давно. Бенджамин Франклин предложил теорию, согласно которой из-за вулканического пепла температура на Земле может понижаться. В 1913 году ученый из Бюро погоды США Уильям Хамфрис использовал данные наблюдений за грандиозным извержением Кракатау в Юго-Восточной Азии в 1883 году, чтобы установить корреляцию между извержениями вулканов в прошлом и глобальными изменениями температуры. Вулканический пепел примерно в 30 раз эффективнее заслоняет Землю от солнечной радиации, чем препятствует потере ею тепла. За три года, пока оседает пепел от крупного извержения, средняя температура на значительной части земного шара может снизиться на целый градус или даже больше. Наиболее сильно эти последствия проявляются в течение следующего лета после извержения.

На предварительных температурных кривых для малого ледникового периода можно увидеть заметные пиковые отклонения книзу, когда отдельные годы выдавались аномально холодными. Эти аномалии почти всегда связаны с крупными извержениями, такими как извержение вулкана Тамбора в Юго-Восточной Азии в 1815 году – одно из самых грандиозных за последние 15 тысяч лет. В течение нескольких лет пепел Тамборы перемещался в атмосфере, заслоняя Солнце. На температурных диаграммах климатологов на 1816 год приходится пик холода. Это был «год без лета»: в июне в Новой Англии выпал снег, а уже в сентябре европейцы дрожали от стужи. Крупные извержения вулканов почти всегда приводили к холодным летам и плохим урожаям – природным явлениям, не связанным с бесконечными пертурбациями малого ледникового периода. На протяжении XVII века необычная вулканическая активность вносила свой вклад в непостоянство климатических колебаний.

* * *

Чем был вызван малый ледниковый период? Может быть, на температуру в мире на протяжении пяти веков влияли небольшие смещения земной оси? Или к похолоданию привели циклические флуктуации солнечного излучения? Ответ до сих пор ускользает от нас, главным образом потому, что мы только начинаем понимать глобальную климатическую систему и управляющие ею взаимодействия атмосферы и океана. Здесь мало о чем можно говорить с уверенностью. Но нам известно, что мы продолжаем жить в ледниковом периоде, где-то посреди межледниковья, одного из многих, случившихся за последние 750 тысяч лет. Со временем – по некоторым оценкам, в ближайшие 23 тысячи лет – мир, скорее всего, вернется к очередному ледниковому циклу, с такими же экстремальными температурами, как и 18 тысяч лет назад, когда значительная часть Европы по-настоящему глубоко промерзла.

В течение последних 730 тысяч лет медленные циклические изменения эксцентриситета земной орбиты, наклона и ориентации ее оси вращения постоянно меняли характер испарения и выпадения осадков, а также выраженность смены времен года. В результате на планете непрерывно чередовались экстремально холодные и короткие теплые периоды. Геохимик Уоллес Брокер считает, что под влиянием этих изменений вся система взаимодействий океана и атмосферы резко переключалась из одного режима во время эпизодов оледенения в совершенно другой в более теплые периоды. По его словам, каждый щелчок «выключателя» приводил к серьезным изменениям в циркуляции океанических течений, так что тепло переносилось по планете по-разному. Иными словами, климатические закономерности ледникового периода сильно отличались от тех, что действуют в последние 10 тысяч лет[58].

Если Брокер прав, то нынешний климатический режим – результат работы того, что он называет «великим океанским конвейером»[59][60]. Течения, подобно гигантскому транспортеру, обеспечивают циркуляцию воды в Мировом океане. В Атлантике теплые поверхностные воды текут на север почти до самой Гренландии. Охлажденные арктическим воздухом, эти воды опускаются вниз и образуют течение, которое на большой глубине покрывает огромные расстояния – на юг Атлантического океана, до Антарктиды, а оттуда в Индийский и Тихий океаны. В этих океанах поверхностные воды перемещаются на юг, тогда как холодные придонные течения движутся на север. В Атлантике северное течение поглощается более быстрой встречной «конвейерной лентой», которую подпитывает плотная соленая вода, опускающаяся с поверхности в северных морях. По своей мощности поток, циркулирующий в Атлантическом океане, эквивалентен сотне таких рек, как Амазонка. Огромное количество тепла переносится на север и с арктическими воздушными массами поднимается над Северной Атлантикой. Именно этим теплообменом объясняется относительно мягкий морской климат Европы, который с некоторыми вариациями сохраняется на протяжении десяти тысячелетий голоцена.


Великий океанский конвейер переносит соленую воду глубоко под поверхностью Мирового океана. Важное место в этом процессе занимает нисходящий поток соленой воды в Северной Атлантике.


Мы знаем о работе великого океанского конвейера лишь в самых общих чертах, но этого достаточно для понимания того, что изменения в циркуляции поверхностных вод существенно влияют на климатические явления глобального масштаба, такие как Эль-Ниньо. Нам также известно, что хаотичные взаимодействия атмосферы и океана мощно влияют на вихревые атмосферные потоки, опускание поверхностных вод и направления течений в Северной Атлантике. Недавно Брокер и другие ученые обратили внимание на океанические глубины и на изменения в термохалинной циркуляции (циркуляции, вызываемой перепадами температур и солености морской воды)