Нетрудно сообразить, что среди карт одной пятерки будет открытых карт (а они одного цвета, например черного) столько же, сколько закрытых (красных) в другой пятерке.
За спиной следует просто разделить пачку пополам и, прежде чем показать карты зрителям, перевернуть одну из половин. Таким образом, благодаря тому, что карты перевернуты, число открытых карт в каждой пятерке будет одинаковым и эти карты будут разного цвета. В этом фокусе, конечно, можно пользоваться любым четным числом карт, нужно только, чтобы половина их была красной, а половина — черной.
Фокус с перевертыванием карт
Показывающий передает зрителю пачку в 18 карт и просит его проделать над ними под столом так, чтобы никто не видел, следующие операции: перевернуть верхнюю пару карт (т. е. две верхние карты, взятые вместе) и «снять» пачку, еще раз перевернуть верхнюю пару карт и снова снять. Так зритель может продолжать, сколько ему заблагорассудится. Ясно, что в результате этих действий карты перемещаются совершенно непредвиденным образом, причем ни число, ни положение открытых карт в колоде показывающему не могут быть известны. Затем показывающий, усевшись на противоположной от зрителя стороне стола, протягивает под столом руку и берет пачку. Оставляя руки под столом (так что никто, включая самого показывающего, не может видеть его действии над картами), он объявляет, что сейчас вынет пачку и в ней окажется столько-то открытых карт. Он называет число.
Карты вынимаются из-под стола и раскладываются.
Названное число оказывается правильным.
Объяснение. Фокус получается совершенно автоматически. Для того чтобы ои вышел, нужно лишь, спрятав карты под стол, пройтись по ним, переворачивая каждую вторую карту. После этого объявляется, что в пачке находится девять открытых карт (т. е. число, равное половине числа взятых карт). Фокус всегда получится, если для него брать любое четное число карт.
Фокусы, зависящие от первоначального расположения карт в колоде
Фокус с четырьмя тузами
Показывающий просит кого-нибудь назвать число между 10 и 20 и откладывает одну за другой это число карт в кучку. Затем он находит сумму цифр названного числа, снимает сверху кучки число карт, равное этой сумме, и кладет их обратно на верх колоды.
Карта, оказавшаяся в кучке верхней, откладывается в сторону лицевой стороной вниз, а все остальные карты кучки возвращаются на верх колоды. Снова показывающий просит назвать любое число между 10 и 20 и проделывает то же самое вторично. Так третий и четвертый раз, пока этим способом не будут отобраны четыре карты. Эти четыре карты открываются — и все они оказываются тузами!
Объяснение. Перед началом фокуса тузы нужно положить на девятое, десятое, одиннадцатое и двенадцатое места сверху. Далее фокус получается автоматически[7]).
«Манхеттенские чудеса»
Зрителя просят снять колоду примерно посередине, взяв себе любую половину и пересчитать в ней карты.
Допустим, их 24. Два плюс четыре дает шесть. Зритель замечает в своей полуколоде шестую карту снизу, кладет эту полуколоду на другую и, подравняв карты, вручает их показывающему. Последний начинает сдавать карты по одной на стол, произнося при этом по-буквенно фразу «М-а-н-х-е-т-т-е-н-с-к-и-е ч-у-д-е-с-а» («The Magic of Manhattan»), причем так, чтобы на каждую положенную карту приходилось по одной букве. Вместе с последней буквой появится замеченная карта.
Объяснение. В результате описанной процедуры выбранная карта всегда оказывается на девятнадцатом месте сверху. Поэтому любая девятнадцатибуквенная фраза, например «П-о-р-а-з-и-т-е-л-ь-н-ы-е ф-о-к-у-с-ы», приводит к нужной карте[8]).
Сколько переложено карт?
Пачку в 13 карт снимают несколько раз и передают зрителю. Показывающий поворачивается к зрителям спиной и просит переложить по одной любое число карт — от одной до тридцати включительно — снизу пачки наверх.
Показывающий поворачивается лицом к зрителям, берет пачку, развертывает ее веером лицевой стороной вниз и, не задумываясь, вытаскивает карту. Карта открывается, и все видят, что ее числовое значение равно числу переложенных карт. Этот фокус можно повторять сколько угодно раз.
Объяснение. Для демонстрации этого фокуса специально выбирают 13 карт так, чтобы на каждое целое число от 1 до 13 приходилась одна карта с соответствующим числовым значением. Их располагают в порядке убывания числовой величины, начиная с короля и кончая тузом. Показывающий снимает пачку несколько раз и передает ее зрителю, незаметно посмотрев на нижнюю карту. Допустим, это была четверка. После того как карты будут переложены, показывающнй отсчитывает сверху четыре карты и последнюю из них открывает. Ее числовое значение укажет число переложенных карт.[9]
Фокус с нахождением карты
Колода карт тасуется. Показывающий бегло ее просматривает, кладет лицевой стороной вниз и называет одну карту. Допустим, это двойка червей. Теперь кто-нибудь называет число от 1 до 26. Показывающий отсчитывает по одной это число карт на стол и открывает верхнюю карту положенной им кучки. Но это не двойка червей!
Показывающий принимает озадаченный вид и высказывает предположение, что карта, может быть, осталась в нижней половине колоды. Неверная карта поворачивается лицевой стороной вниз и кладется на эту полуколоду, а сверху помещаются остальные карты из кучки, оставшейся на столе. Зрителя просят назвать еще одно число, на этот раз от 26 до 52. Это число карт снова сдается на стол. И опять-таки оказывается, что верхняя карта в кучке — не двойка червей.
Показывающий принимает озадаченный вид и высказывает предположение, что карта, может быть, осталась в нижней половине колоды. Неверная карта поворачивается лицевой стороной вниз и кладется на эту полуколоду, а сверху помещаются остальные карты из кучки, оставшейся на столе. Зрителя просят назвать еще одно число, на этот раз от 26 до 52. Это число карт снова сдается на стол. И опять-таки оказывается, что верхняя карта в кучке — не двойка червей.
Опять неверная карта переворачивается и кладется на нижнюю часть колоды, а карты, взятые со стола, помещают сверху. Теперь показывающий высказывает предположение, что двойка червей найдется, если от второго числа отнять первое. Производится вычитание, и отсчитывается число карт, равное разности, следующая карта открывается, и на этот раз она оказывается двойкой червей!
Объяснение. Бегло просмотрев карты, показывающий просто называет верхнюю карту колоды. После двух отсчетов карта автоматически оказывается в положении, следующем за указываемым разностью двух чисел, названных зрителем[10]).
Глава вторая. ФОКУСЫ С МЕЛКИМИ ПРЕДМЕТАМИ
Пожалуй, почти каждый мелкий предмет, так или иначе связанный с числами или счетом, использовался для показа фокусов математического характера или для математических головоломок и задач. Самая большая группа таких фокусов — фокусы с игральными картами — была нами рассмотрена выше. В настоящей и последующих главах мы рассмотрим математические фокусы с другими мелкими предметами.
Не стараясь сделать изложение исчерпывающим, мы лишь проиллюстрируем различные принципы, на которых они основаны.
Игральные кости
Игральные кости так же стары, как и игральный карты, а история зарождения этой игры так же неясна. И все же с удивлением приходится отметить, что самые ранние из известных игральных костей древней Греции, Египта и Востока имеют точно такой же вид, как и современные, т. е. кубик с цифрами от единицы до шестерки, нанесенными на грани кубика и расположенными таким образом, что сумма их на противоположных гранях равна семи. Однако кубическая форма игральной кости объясняется тем, что только правильный многогранник обеспечивает полное равноправие всех граней, а из пяти существующих в природе правильных многогранников куб обладает, явным преимуществом как атрибут игры: его легче всего изготовить, и, кроме того, он единственный из них, который перекатывается легко, но не слишком (тетраэдр перекатывать труднее, а октаэдр, икосаэдр и додекаэдр настолько близки по своей форме к шару, что быстро укатываются). Поскольку куб имеет шесть граней, то нанесение на них шести первых целых чисел напрашивается само собой, а расположение их с суммой — семеркой — представляется наиболее простым и симметричным. И это является между прочим единственным способом такого их попарно противоположного расположения, чтобы суммы всех пар были одинаковы.
Именно этот «принцип семерки» лежит в основе большинства математических фокусов с игральными костями. В лучших из таких фокусов упомянутый принцип применяется настолько тонко, что о нем никто и не подозревает. В качестве примера рассмотрим один очень старый фокус.
Угадывание суммы
Показывающий поворачивается спиной к зрителям, а в это время кто-нибудь из них бросает на стол три кости. Затем зрителя просят сложить три выпавших числа, взять любую кость и прибавить число на нижней ее грани к только что полученной сумме.
Потом снова бросить эту же кость и выпавшее число опять прибавить к сумме. Показывающий обращает внимание зрителей на то, что ему никоим образом не может быть известно, какую из трех костей бросали дважды, затем собирает кости, встряхивает их в руке и тут же правильно называет конечную сумму.
Объяснение. Прежде чем собрать кости, показывающий складывает числа, обращенные кверху. Добавив к полученной сумме семерку, он находит конечную сумму.
Вот еще один остроумный фокус, основанный на принципе семерки. Показывающий, повернувшись спиной к зрителям, просит нх составить столбиком три игральные кости, затем сложить числа на двух соприкасающихся гранях верхней и средней костей, потом прибавить к полученному результату сумму чисел на соприкасающихся гранях средней и нижней костей, наконец, прибавить к последней сумме еще число на нижней грани нижней кости. В заключение столбик накрывается платком.