Математические головоломки профессора Стюарта — страница 11 из 52

Я вернул свой армейский револьвер обратно в карман.

– Жаль.

– Однако Могиарти допустил ошибку. В доме есть заколоченная дверца для кошки. Может быть, нам удастся восстановить ее функции и выманить ваших кошек наружу.

– Да! – воскликнул я. – Я понял! Мы сможем выманить их любимыми лакомствами. Аневризма любит артишоки, Ботулизм без ума от бананового хлеба, Ветрянка ни за что не устоит перед ватрушкой, а погибель Геморроя – гренки!

– Гренки… – отозвался Сомс. – Ну, неважно. Немного поработать головой, немного принципиально важной информации – и вы видите? Мы продвигаемся вперед. Мы можем воспользоваться этими предметами, чтобы выманить ваших кошек наружу через кошачью дверцу.

– У меня дома имеются значительные запасы необходимых продуктов, – поспешил я заверить Сомса. – Я привезу.

– Это будет просто замечательно, Ватсап, но всему свое время. Пока же у нас есть проблема. Мы должны подносить эти деликатесы к дверце в правильном порядке; ни в коем случае нельзя допустить, чтобы ваши кошки подрались.

– Конечно. Они могут поранить друг друга.

– Нет, дело не в этом. Подвал дома Могиарти заполнен мощной взрывчаткой, и злодей устроил так, что все взорвется, если животные подерутся.

– Что?! Почему?

– Потому что он уверен, и не без оснований, что любая попытка спасти их вызовет кошачью драку. Он хочет использовать самих животных в качестве сигнализации. Как обычно, ему наплевать на страшные последствия его кровавых махинаций. Как я уже сказал, он подает нам сигнал: он ни перед чем не остановится.

– Вижу, это и правда так.

– Вы видите, Ватсап, но вы не замечаете. Наблюдение начинается с расспросов, которые дают материал для дедукции. Я сейчас занимаюсь расспросами. При каких обстоятельствах ваши кошки дерутся? Будьте точны, от этого зависит успех или неудача нашего замысла.

– Они дерутся только в помещении, – ответил я, немного поразмыслив.

– Но тогда дом может в любой момент взлететь на воздух!

– Нет, мои кошки могут быть совершенно мирными, если удастся избежать некоторых их сочетаний.

Я записал на листе бумаги несколько условий.

• Если Ветрянка и Аневризма находятся в помещении вместе, они дерутся, если рядом нет Геморроя. Если Геморрой и Ботулизм находятся в помещении вместе, они дерутся, если рядом нет Аневризмы.

• Если Аневризма и Геморрой находятся в помещении вместе, они дерутся, если рядом нет Ботулизма или Ветрянки (или их обоих).

• Если Ветрянка и Геморрой находятся в помещении вместе, они дерутся, если рядом нет Ботулизма или Аневризмы (или их обоих).

• Если Аневризма или Ботулизм остаются в помещении поодиночке, они вообще отказываются выходить наружу.


Как Сомсу и Ватсапу выманить кошек наружу, не вызвав при этом взрыв? Одновременно в кошачью дверцу может протиснуться лишь одно животное. Забудьте о тривиальных ходах, когда какая-то из кошек выходит наружу и ее тут же возвращают обратно. Однако при необходимости любую из кошек в процессе выманивания можно в нужный момент втолкнуть обратно через ту же дверцу.


Ответ см. в главе «Загадки разгаданные».

Блинные числа

Вот настоящая математическая загадка – простая задача, решение которой пока ускользает от ученых не хуже, чем преступный гений Могиарти.

Дается стопка круглых блинов разных неповторяющихся размеров. Ваша задача – поменять порядок блинов таким образом, чтобы они располагались снизу вверх в порядке убывания диаметра. Единственное действие, которое вам разрешается производить, – это вставить условную лопаточку под один из блинов стопки, поднять стопку, которая оказалась сверху, и перевернуть ее целиком. Вы можете повторять эту операцию столько раз, сколько потребуется, и произвольно выбирать место, куда вставлять лопаточку.

Приведем пример с четырьмя блинами. Для их упорядочивания требуется три переворота.



Вот несколько вопросов для вас.

1. Любую ли стопку из четырех блинов можно упорядочить не более чем за три переворачивания?

2. Если нет, то каково наименьшее число переворачиваний, при помощи которых можно упорядочить любую стопку из четырех блинов?

3. Определите для n-го блина число Pn – наименьшее число переворачиваний, при помощи которых можно упорядочить любую стопку из n блинов. Докажите, что Pn всегда конечно. То есть что любую стопку блинов можно упорядочить при помощи конечного числа переворачиваний.

4. Найдите Pn для n = 1, 2, 3, 4, 5. Я остановился на n = 5, потому что здесь мы уже имеем 120 различных вариантов стопки, все из которых нужно рассмотреть, а это, говоря откровенно, уйма работы.

Ответы на вопросы, а также то, что еще известно об этой задаче, см. в главе «Загадки разгаданные».

Фокус с суповой тарелкой

В продолжение кулинарной темы существует забавный фокус, который вы можете проделать с суповой тарелкой или другим похожим предметом. Начните с того, что поставьте тарелку на пальцы примерно так, как это делает официант, подавая кушанья. Затем объявите зрителям, что вы сейчас проделаете поразительный трюк: сделаете полный круг рукой, все время удерживая тарелку в горизонтальном положении.

Для этого сначала заверните руку внутрь – так чтобы тарелка оказалась примерно под мышкой. Затем продолжайте двигать тарелку по кругу, но руку поднимите над головой. Все естественным образом повернется в исходную позицию, и тарелка не упадет, несмотря на то что вы ее не придерживаете.

Видео трюка с тарелкой (суповой) можно найти в Интернете, к примеру на сайте


http://www.youtube.com/watch?v=Rzt_byhgujg,


где его называют балийским трюком с чашей и связывают с балийским танцем, где вместо тарелки используется чаша с жидкостью. Аналогичный филиппинский танец, где задействованы винные бокалы (по два на человека, по одному в каждой руке), можно увидеть на YouTube по адресу


http://www.youtube.com/watch?v=mOO_IOznZCQ


Движение руки при исполнении трюка может показаться достаточно простым, но имеет глубокий математический смысл. В частности, оно помогает специалистам по физике элементарных частиц разобраться в одном из любопытных квантовых свойств, который называют спином. В действительности квантовые частицы не вращаются на самом деле, как шарик на пальце жонглера, но существует число, которое называется «спин» и в определенном смысле обозначает что-то похожее. Спин может быть положительным и отрицательным, что аналогично вращению по часовой стрелке или против нее. У некоторых частиц спин выражается целым числом; эти частицы называются бозонами (помните охоту на бозон Хиггса?). Другие, что куда более необычно, имеют полуцелые спины, такие как 1/2 или 3/2. Такие частицы называются фермионами.

Половинки спина возникают благодаря одному очень странному явлению. Если взять частицу со спином 1 (или любым другим целым спином) и повернуть ее в пространстве на 360°, она окажется в прежнем состоянии. Но если взять частицу со спином ½ и повернуть ее в пространстве на 360°, то спин ее превратится в −½. Нужно повернуть частицу на 720°, на два полных оборота, чтобы получить прежний спин.

Математический смысл всего этого заключается в том, что существует «группа преобразований» под названием SU (2), которая описывает спин и действует путем преобразования квантовых состояний, и другая группа SO (3), которая описывает вращения в пространстве. Они родственны между собой, но не идентичны: каждое вращение в SO (3) соответствует двум различным преобразованиям в SU (2), противоположным одно другому. Такое отношение называется двойным накрытием. SU (2) как бы накручивается вокруг SO (3), но при этом совершает два оборота. Это немного напоминает резиновую ленту, дважды обернутую вокруг гимнастической палки.

Физики иллюстрируют эту идею посредством фокуса со струной Дирака, названной в честь великого квантового физика Поля Дирака. Идея реализуется во множестве разных форм; в одной из простейших реализаций используется лента, один конец которой закреплен неподвижно, а другой прикреплен к свободно плавающему в пространстве вращающемуся объекту – ротору. Лента имеет форму вопросительного знака. После поворота на 360° она не возвращается в первоначальное положение, а занимает положение, повернутое относительно первоначального на 180°. А вот второй полный оборот ротора (720°) не перекручивает ленту, а возвращает ее в начальное положение. Лента движется приблизительно так же, как рука с суповой тарелкой, разве что тарелка при этом слегка перемещается. Астронавт в невесомости мог бы проделать те же движения вокруг зафиксированной тарелки, сохраняя при этом ориентацию тела.

Компьютерная анимация Air On Dirac String, подготовленная Джорджем Фрэнсисом, Лу Кауфманом и Дэниелом Сандином (графика Криса Хартмана и Джона Харта) и располагающаяся по адресу http://www.evl.uic.edu/hypercomplex/html/dirac.html, наглядно демонстрирует связь между фокусом со струной Дирака и филиппинским танцем с чашей вина.

Ту же идею можно использовать для связи электрического тока с неким вращающимся устройством, к примеру с колесом. На первый взгляд здесь возникает техническая проблема: чтобы лента могла распутываться, колесо должно висеть в воздухе без всякой поддержки. Однако в 1975 г. Д. А. Адамс разработал и запатентовал устройство, при помощи специального передаточного механизма позволяющее ленте беспрепятственно огибать колесо со всех сторон. Это устройство слишком сложно, чтобы описывать его здесь, но тот, кого это заинтересовало, может заглянуть в статью: C. L. Strong, The Amateur Scientist, Scientific American (December 1975) 120–150.


Математические хайку

Хайку – это малая японская стихотворная форма, состоящая традиционно из трех отдельных фраз (строк) и 17 слогов. Реальное японское слово не соответствует в точности английской