– Три – это уже обычно, – пробормотал Сомс, но, заметив мой недовольный жест, не стал развивать тему. Я долил ему вина.
Беатрис попросила меня объяснить свои слова, и я поспешил выполнить ее просьбу.
– Вы, Артур и я – каждый из нас – знаем остальных двоих: вот вам тройка взаимных знакомств.
– Мне кажется, мы с вами больше, чем просто знакомые, Джон, – ответила она.
– Счастлив это слышать, дорогая леди, – сказал я, – но я подбирал слово, которое можно было бы применить к любой паре здесь присутствующих. Напротив, Сомс, вы и Доринда совершенно не знакомы между собой, в том смысле, что до сего дня вы не встречались в обществе. Конечно, слава Сомса намного его обгоняет.
– В самом деле, – сказал Гренвилл, одарив меня кислым взглядом.
– Ну так вот, этот факт кажется мне весьма примечательным…
– А не должен бы, Ватсап, – прервал меня Сомс. – По крайней мере, присутствие одной такой тройки, знакомцев или незнакомцев, не должно казаться чем-то особенным.
– Почему нет? – спросил Артур.
– Потому что по крайней мере одна такая тройка должна возникнуть в любом месте, где соберется вместе шесть человек, – ответил Сомс. – При этом не имеет значения, кто с кем знаком.
– Черт возьми! – воскликнул Артур. – Но это же замечательно, ведь так?
– Как вы можете быть в этом уверены, мистер Сомс? – поинтересовалась Беатрис. Ее глаза сияли – и я подозревал, не только из-за шерри.
– Потому что, моя дорогая мадам, это можно доказать.
– О-о. Продолжайте, пожалуйста, мистер Сомс. Меня чрезвычайно интересуют подобные вещи.
Сомс наклонил голову, но я заметил, что на его губах мелькнула слабая улыбка. Он делает вид, что женские чары не оказывают на него никакого действия, но я-то знаю, что это лишь притворство. Ему просто не хватает уверенности в себе. Я надеюсь, что не будет хватать и дальше, потому что Беатрис очень симпатичная и скромная, настоящая находка для любого достойного мужчины. Для меня, к примеру.
– Доказательство будет понятнее всего, если представить его в виде диаграммы, – сказал Сомс. Он поднялся, подошел к обеденному столу и взял из стопки несколько тарелок и столовых приборов; попутно он отмел все мои возражения вместе с несколькими салфетками, горчицей и горшком с геранью.
– Тарелки представляют нас шестерых, – объявил Сомс, подписывая на тарелках наши инициалы палочкой театрального грима, которая, видимо, сохранилась у него сувениром того времени, когда он обдумывал карьеру на сцене. – Вилка, соединяющая двух людей, означает, что они знакомы; нож между ними означает, что нет.
– Взгляды как кинжалы, значит, – заметила Беатрис. Я поспешил поаплодировать ее остроумию и наполнить ее бокал.
– К примеру, меня и Ватсапа соединяет вилка в центре стола, но со всеми остальными меня соединяет нож. Таким образом, как проницательно заметил Ватсап, треугольник ВАБ состоит из вилок, а треугольник СБД – из ножей. Однако я утверждаю, что, как бы мы ни разложили ножи и вилки, на столе всегда будет присутствовать по крайней мере один треугольник, образованный одинаковыми приборами.
– Но, может быть, оба, мистер Сомс? – спросила Беатрис. Ее глаза не отрываясь следили за каждым его движением.
– Иногда да, мадам, но не всегда. Если взять крайний случай, то есть если на столе окажутся одни только вилки, то никакого треугольника из ножей не образуется; или, если там будут только ножи, не образуется треугольника из вилок.
Беатрис кивнула с серьезным видом.
– В таком случае представляется, – протянула она, – что по мере того, как вилки заменяются ножами и возможность образования треугольника из вилок уменьшается, возможность образования треугольника из ножей, наоборот, увеличивается.
Сомс кивнул.
– Очень хорошо сформулировано, мадам. Для доказательства достаточно всего лишь показать, что второе появляется раньше, чем исчезает первое. Для определенности выберем одну конкретную тарелку. Любую. На нее указывают пять приборов. По крайней мере три из них должны быть одного типа. Почему?
– Потому что если там окажется два одних и два других, то всего приборов будет максимум четыре, – сразу же сказала Беатрис.
– Очень хорошо! – объявил я прежде, чем Сомс успел озвучить аналогичный комплимент.
– Так, – сказал он, – рассмотрим набор из трех одинаковых приборов – будем считать, что это вилки, в случае с ножами будет то же самое, – и посмотрим на тарелки, на которые они указывают. Конечно, на остальные, не на ту, которую выбрали в самом начале. Видим, что либо одна из этих тарелок связана с другой вилкой, либо…
– Все три связаны ножами! – воскликнула она. – В первом случае мы нашли треугольник из вилок, во втором – из ножей. Да, мистер Сомс, теперь, когда вы все это так ясно объяснили, это кажется…
– Совершенно очевидным, – вздохнул Сомс, делая большой глоток шерри.
Это замечание немного остудило ее энтузиазм, и я помахал ей рукой, извиняясь за грубость моего товарища. От ее ответной улыбки у меня потеплело на сердце.
Эта область математики носит название теории Рамсея. Дополнительную информацию см. в главе «Загадки разгаданные».
Как записывать очень большие числа
Сколько песчинок во Вселенной? Архимед, величайший из древнегреческих математиков, решил в порядке борьбы с господствовавшим тогда представлением о том, что ответом на этот вопрос является бесконечность, найти способ выражения очень больших чисел. В его книге «Исчисление песчинок» предполагалось, что Вселенная имеет размеры, которые приписывали ей греческие философы, и что она целиком заполнена песком. Архимед рассчитал, что в этом случае в ней содержалось бы (в нашем десятичном представлении) не более 1 000… 000 песчинок (число с 63 нулями).
Это много, но не бесконечное количество. Существуют ли числа еще больше?
Математикам известно, что наибольшего (целого) числа не существует. Числа могут быть сколь угодно большими. Причина проста: если бы наибольшее число существовало, его можно было бы сделать еще больше, прибавив 1. Большинство детей, освоивших десятичную запись, быстро понимают, что любое число можно сделать больше (мало того, вдесятеро больше), просто приписав к его концу еще один нолик.
Однако, несмотря на то что в принципе предела для величины числа не существует, у нас часто имеются практические ограничения, присущие выбранному нами способу записи чисел. К примеру, римляне записывали числа при помощи букв I (1), V (5), X (10), L (50), C (100), D (500) и M (1000), объединяя их в группы для получения промежуточных чисел. Так что числа 1–4 записывались I, II, III, IIII, за исключением того, что IIII часто заменяли на IV (5 минус 1). В этой системе наибольшее число, которое вы можете записать, равно:
MMMMCMXCIX = 4999,
или еще на тысячу меньше, если ограничиться только тремя M.
Однако иногда римлянам требовались числа и побольше. Чтобы обозначить миллион, они ставили черточку (римское название vinculum) над M, получая M. Вообще, черточка над буквой увеличила ее значение в тысячу раз, но такая запись использовалась редко, и даже когда использовалась, то ставилась лишь один раз, так что максимум, до чего можно было добраться таким образом, – это несколько миллионов. Ограничения этой символьной системы ясно показывают, что размер чисел, которые можно записать, всегда зависит от используемой системы представления чисел.
В настоящее время мы можем пойти значительно дальше. Миллион – это 1 000 000, так, мелочь. Мы можем получить намного более крупные числа, просто подставив в конце еще нуликов и наблюдая, как возрастает число стандартных групп по три цифры (математики нередко разделяют их тонким пробелом для наглядности). В западном мире существуют стандартные наименования для больших чисел, отражающие эту традицию: миллион, биллион, триллион, … и далее до сентиллиона. Но человек так устроен, что у него не может быть все просто, особенно в математике, поэтому эти слова имеют (или, по крайней мере, имели раньше) разные значения по разные стороны Атлантики. В США биллион равен 1 000 000 000, но в Великобритании этим словом называют 1 000 000 000 000 – то есть то, что американцы назвали бы триллионом. Однако в нынешнем взаимосвязанном мире победил американский вариант – возможно, потому, что «миллиард» (британское название для тысячи миллионов), во-первых, устаревает и, во вторых, его слишком легко спутать с «миллионом». А биллион[24] – чудесное круглое число для международных финансов, по крайней мере до тех пор, пока мировые банки не выбросят на ветер финансового кризиса так много, что нам придется привыкать думать в триллионах.
Эти же числа можно записать и проще, если использовать степени 10. В этом случае 106 обозначает 1 с шестью нулями, то есть миллион. Число 6 здесь называют показателем экспоненты. Биллион – это 109 (миллиард), или 1012 (триллион) в старомодном британском варианте. Сентиллион превращается в 10303 (10600 в британском варианте). Признанные расширения к стандартным названиям существуют вплоть до миллиниллиона, 103003. Существует несколько систем таких расширений, но жизнь слишком коротка, чтобы описывать их все или хотя бы подробно описывать разницу между ними.
Еще два названия для больших чисел, которые также можно найти в большинстве словарей, – это гуголь и гугольплекс. Гуголь – это 10100 (1 со ста нулями); название придумал в свое время девятилетний племянник Джеймса Ньюмена Милтон Сиротта. Сиротта предложил и еще большее число – гуголплекс, которое определил так: «Я писал нули, пока ты не устал». Некоторая неопределенность количества нулей потребовала уточнения: «Я поставил еще гугол нулей».
Это более интересно, поскольку здесь мы сталкиваемся с той же проблемой, с какой столкнулись когда-то римляне, с той разницей, что они занялись ею намного раньше. Если вы попытаетесь записать гуголплекс в десятичном виде, как 1 000 000 000 …, то вам не хватит жизни, чтобы добраться до его конца. Строго говоря, вам не хватит для этого времени жизни всей Вселенной. Считая, что современные космологические представления верны, Вселенная, вероятно, закончит свое существование раньше, чем вы закончите писать это число. Во всяком случае, места для всех этих нулей вам не хватит даже в том случае, если каждый из них размером будет не больше кварка.