Математические головоломки профессора Стюарта — страница 30 из 52

– Ну… дурные утянут среднее значение вниз, и превосходных не хватит, чтобы их уравновесить… Господи! Все компетентные и превосходные кэбмены окажутся выше среднего!

– В самом деле, – отозвался Сомс. Он быстро набросал на каком-то случайном листе диаграмму. – С этими данными, которые более реалистичны, среднее значение равно 6,25, и 60 % кэбменов оказываются выше него.



– Так что статья в Manchester Mirrograph ошибочна? – поинтересовался я.

– Вас это удивляет, Ватсап? Откровенно говоря, у них редко попадаются полностью правдивые статьи. Но здесь журналист угодил в обычную ловушку. Он спутал среднее значение с медианным, которое определяется как значение, для которого половина оценок находится выше, а половина – ниже. Эти две величины часто не совпадают.

– Получается, что 75 % кэбменов ни при каких обстоятельствах не могут иметь уровень выше медианного?

– Только если число кэбменов равно нулю.

– Но при этом 75 % кэбменов в принципе может иметь уровень выше среднего?

– Да.

– И это не означало бы, что у них всех завышенное самомнение?

Сомс снова вздохнул.

– А вот это, мой дорогой Ватсап, совсем другой коленкор, и даже другого цвета. Существует распространенная форма когнитивной ошибки, которую называют иллюзорным превосходством. Многие воображают себя выше других, даже если это на самом деле не так. Почти все мы страдаем этим заблуждением, за исключением, естественно, меня. В прошлом месяце журнал Quantitative Phrenology and Cognition[26] написал, что 69 % шведских кэбменов считают свои способности выше медианных. Это точно иллюзия, даже не сомневайтесь.


Реальные современные данные см. в главе «Загадки разгаданные».

Куб «Мышеловка»

Джереми Фаррелл придумал магический словарный куб,который подчиняется тем же правилам, что и его магические квадраты. В кубе задействовано слово MOUSETRAP (мышеловка), а буквам присвоены следующие магические значения: M = 0, O = 0, U = 2, S = 6, E = 9, T = 18, R = 3, A = 1, P = 0. Некоторые из слов куба представляют собой личные имена, а некоторые используются очень редко. К примеру, OSE – это имя какого-то демона, а также название мест в Японии, Нигерии, Польше, Норвегии и на острове Скай. Тем не менее поразительно уже то, что такую вещь в принципе можно сделать.


Числа Серпинского

Специалисты по теории чисел, занятые поисками больших простых чисел, часто рассматривают числа вида k2n + 1 для какого-то выбранного k при разных n. Пробные расчеты позволяют предположить, что для большинства значений k среди этих чисел встречается по крайней мере одно простое число, часто больше. К примеру, если k = 1, то 1 × 2n + 1 является простым для n = 2, 4, 8. Если k = 3, то 3 × 2n + 1 простое при n = 1, 2, 5, 6, 8, 12. Если k = 5, то 5 × 2n + 1 простое при n = 1, 3, 7. (В общем случае мы можем разделить k на 2 столько раз, сколько нужно, чтобы получить нечетное число, а все двойки включить в 2n. Поэтому можно смело считать k нечетным, не теряя общности. К примеру, 24 × 2n = 3 × 23× 2n = 3 × 2n+3.)

Соблазнительно предположить, что для любого k³≥2 существует по крайней мере одно простое число вида k2n + 1. Однако в 1960 г. Вацлав Серпинский доказал, что существует бесконечно много нечетных k, для которых все числа вида k2n + 1 являются составными. Эти числа получили название чисел Серпинского.

В 1992 г. Джон Селфридж доказал, что 78 557 – число Серпинского; он показал, что все числа вида 78 557 × 2n + 1 делятся по крайней мере на одно из чисел 3, 5, 7, 13, 19, 37, 73. Говорят, что эти числа образуют покрывающее множество. Приведем первые десять известных чисел Серпинского:


78 557 271 129 271 577 322 523 327 739

482 719 575 041 603 713 903 983 934 909


Считается, что 78 557 – наименьшее число Серпинского, но пока этот факт никем не доказан и не опровергнут. В 2002 г. на сайте www.seventeenorbust.com был организован поиск простых чисел вида k2n + 1, существование которых доказывало бы, что k не является числом Серпинского. Когда поиск только начинался, у математиков было 17 кандидатов на роль чисел Серпинского, не превышающих 78 557, но постепенно они были ликвидированы, так что осталось только шесть: 10 223, 21 181, 22 699, 24 737, 55 459 и 67 607. Попутно в рамках проекта было найдено несколько очень больших простых чисел.


Джеймс Джозеф кто?

Джеймс Джозеф Силвестер – английский математик, работавший с Артуром Кейли, в частности в области теории матриц и теории инвариант. Всю жизнь он очень интересовался поэзией и часто вставлял стихотворные цитаты в свои математические научные статьи. В 1841 г. он переехал в США, но вскоре вернулся обратно. В 1877 г. он вновь пересек Атлантику, занял место первого профессора математики в Университете Джона Хопкинса и основал American Journal of Mathematics, издающийся с немалым успехом и сегодня. Он вернулся в Англию в 1883 г.



Изначально его звали просто Джеймс Джозеф. Когда его старший брат эмигрировал в США, в офисе иммиграционной службы ему сказали, что у каждого должно быть по три имени: два имени и фамилия. По какой-то причине брат взял себе новую фамилию – Силвестер, сделав прежнюю вторым именем. Джеймс Джозеф последовал примеру брата.

Ограбление в Баффлхэме Из мемуаров доктора Ватсапа

При ограблении величественного особняка лорда Баффлхэма из сейфа похитили несколько изумрудов и рубинов. Сомс, которого пригласили расследовать дело, быстро заподозрил двух гостей – леди Изабеллу Никетт и баронессу Руби Робхэм. Та и другая испытывали серьезные материальные трудности и, без сомнения, не устояли перед искушением. Но где доказательства?

Обе дамы признались, что у них есть кое-какие драгоценности, но утверждали, что это их собственность. Сомсу пока не удалось убедить инспектора Роулейда получить ордер на обыск в аристократических домах, хотя это могло бы разрешить все проблемы; пока же он не мог заглянуть в шкатулки с драгоценностями означенных дам.

– Дело, – сказал Сомс, – определяется тем, сколько драгоценностей имеют наши две дамы. Если их число совпадает с числом похищенных вещей, мы получаем последнее необходимое доказательство. Роулейд готов запросить ордер на обыск, но только если мы сможем снабдить его этими двумя числами.

– Изабелла заявила, что у нее имеются только изумруды, – пробормотал я вполголоса. – А Руби говорит, что у нее только рубины.

– В самом деле. Я уверен, что оба эти заявления правдивы. Далее, из показаний лакея следует, что число тех и других драгоценностей лежит в интервале от 2 до 101 включительно.

– Кухарка не настроена болтать о хозяйках, – заметил я. – Но мне удалось убедить ее открыть произведение этих двух чисел.

– А дворецкий, тоже неболтливый, но убежденный аргументом в виде десяти золотых соверенов, назвал мне их сумму, – отозвался Сомс.

– Значит, мы можем, решив квадратное уравнение, найти оба числа! – возбужденно воскликнул я.

– Разумеется, хотя мы не будем знать, какое из чисел относится к изумрудам, а какое – к рубинам, – протянул Сомс. – Данные симметричны. Но любого совпадения будет достаточно, чтобы инспектор Роулейд получил ордер на обыск, а там все, я не сомневаюсь, найдется.

– Если вы назовете мне произведение, – сказал я, – то я смогу решить уравнение.

– Ах, мой дорогой Ватсап, вам не достает утонченности, – критически заметил Сомс. – Дайте посмотреть, нельзя ли вывести числа без этого… Так, знаете, чему они равны?

– Нет.

– Я так и знал, – заявил Сомс, к моему раздражению. Если знал, зачем спрашивать? Неожиданно меня осенило.

– Теперь я тоже знаю эти числа, – объявил я.

– В таком случае я тоже их знаю, Ватсап.


Какие это два числа? Ответ см. в главе «Загадки разгаданные».

Квадриллион знаков числа π

В настоящее время нам известно десятичное значение π с точностью до 12 100 000 000 050 знаков; соответствующий расчет провел в 2013 г. Сигеру Кондо, и потребовалось ему на это 94 дня. На самом деле никому нет дела до того, какой получен ответ, но известно, что замечательные рекордные усилия такого рода нередко приводят к новым озарениям, а также являются хорошим способом проверки новых суперкомпьютеров. Одно из самых забавных открытий состоит в том, что можно вычислять отдельные цифры десятичной записи π без нахождения всех предыдущих цифр. Однако в настоящее время мы можем это делать только в шестнадцатеричной нотации, то есть в системе счисления с основанием 16, из которой можно без труда получить цифры в системах счисления с основаниями 8, 4 и 2 (двоичной). Эта идея работает и для других констант, не только для π, а также для троичной системы счисления, но систематической теории на этот счет пока нет. Для десятичной нотации, то есть для системы счисления с основанием 10, ничего подобного не известно.

Первоначальное открытие, формула ББП (Бейли – Боруэйна – Плаффа), изложена ниже; вы найдете ее также в «Кабинете…» на с. 264. Это бесконечный ряд, при помощи которого можно вычислить конкретный шестнадцатеричный знак числа π, не вычисляя при этом предыдущих его знаков. Так что мы можем быть уверены, что квадриллионный двоичный знак числа π – нуль, благодаря проекту PiHex; пройдя еще дальше, скажем, что двухквадриллионный двоичный знак π также равен 0, благодаря расчету, проведенному одним из сотрудников компании Yahoo! и занявшему 23 дня. Несмотря на все наши познания, для того чтобы найти предыдущий знак, потребовался бы еще один столь же длительный расчет.