Математические головоломки профессора Стюарта — страница 41 из 52

> 0 существует лишь конечное число троек положительных целых чисел, не имеющих общих делителей и удовлетворяющих уравнению a + b = c, таких, что с>d1 + ε, где d обозначает произведение различных простых делителей abc».

Это и есть гипотеза ABC. Если бы ее удалось доказать, многие глубокие и сложные теоремы, доказанные в последние десятилетия с огромными усилиями и самыми хитроумными методами, оказались бы ее прямыми следствиями и получили более простые доказательства. Более того, все эти доказательства были бы очень похожи между собой: провести несложную рутинную подготовку, а затем применить «теорему ABC», как она бы тогда называлась. Эндрю Грэнвилл и Томас Такер[35] пишут, что разрешение этой гипотезы произвело бы «…необычайный эффект на наши представления о теории чисел. Доказательство или опровержение ее было бы ошеломительным».

Но вернемся к Мотидзуки, уважаемому специалисту по теории чисел с солидным багажом исследований. В 2012 г. он изложил предполагаемое доказательство гипотезы ABC в серии из четырех препринтов – статей, не представленных пока для официальной публикации. Вопреки его намерениям эта публикация привлекла внимание средств массовой информации, хотя с его стороны, конечно, было наивно полагать, что подобного исхода удастся избежать. В настоящее время специалисты проверяют 500 или около того страниц принципиально новой математики, из которых состоит доказательство. Это занимает много времени и усилий, потому что идеи в нем формализованны, сложны и необычны; однако никто не отвергает доказательство только по этой причине. Одна ошибка уже найдена, но Мотидзуки заявил, что она не портит доказательство. Он продолжает публиковать отчеты по ходу проверки, а эксперты продолжают свою работу.

Кольца из правильных многогранников

Восемь одинаковых кубов, плотно составленных гранями, образуют куб вдвое большего размера. Восемь кубов можно составить и так, чтобы они образовали «кольцо» – объемную фигуру с отверстием, топологически – тор.



Приложив некоторые усилия, можно проделать то же самое с тремя другими правильными многогранниками: октаэдром, додекаэдром и икосаэдром. Во всех четырех случаях многогранники совершенно правильные и стыкуются друг с другом в точности: это очевидно для кубов и прямо следует из симметрии для трех остальных многогранников.



Однако всего существует пять правильных многогранников, и для одного из них – тетраэдра – этот метод не работает. Поэтому в 1957 г. Гуго Штейнгауз задал вопрос о том, можно ли склеить некоторое количество одинаковых правильных тетраэдров гранью к грани так, чтобы они образовали замкнутое кольцо. Ответ на его вопрос был дан годом позже, когда С. Сверчковский доказал, что подобная комбинация невозможна. Тетраэдр – особый многогранник.

Однако в 2013 г. Майкл Элгерсма и Стэн Вэгон открыли красивое восьмисторонне-симметричное кольцо из 48 тетраэдров. Неужели Сверчковский ошибся?



Вовсе нет, как объяснили Элгерсма и Вэгон в своей статье, посвященной этому открытию. Если изготовить эту комбинацию из правильных тетраэдров, останется небольшой разрыв. Этот разрыв можно закрыть, если удлинить ребра, показанные на рисунке жирными линиями, с 1 до 1,00274, примерно на одну пятисотую, чего человеческий глаз заметить не в состоянии.




Сверчковский спрашивал: если взять много тетраэдров и составить их в кольцо с разрывом, то насколько маленьким может оказаться этот разрыв? Можно ли сделать его сколь угодно маленьким по отношению к размеру одного тетраэдра за счет использования достаточно большого их числа? Ответ на этот вопрос неизвестен до сих пор, при условии что тетраэдры не могут пересекаться друг с другом, однако Элгерсма и Вэгон доказали, что, если разрешить взаимопроникновение, ответ должен быть положительным. К примеру, 438 тетраэдров оставляют разрыв, составляющий примерно одну десятитысячную длины ребра.



Авторы предположили, что ответ должен быть положительным, даже если тетраэдрам не разрешено пересекаться, но конструкции при этом должны возникать значительно более сложные. В доказательство они нашли серию колец со все уменьшающимися разрывами. Нынешний рекорд, открытый в 2014 г., представляет собой почти замкнутое кольцо из 540 непересекающихся тетраэдров с разрывом 5 × 10–18.


Дополнительную информацию см. в главе «Загадки разгаданные».

Задача о квадратном колышке

Эта математическая загадка оставалась нерешенной больше 100 лет. Правда ли, что любая простая (без самопересечений) замкнутая кривая на плоскости содержит четыре точки, представляющие собой углы квадрата с ненулевой стороной?



Под «кривой» здесь подразумевается непрерывная линия без разрывов, не обязательно гладкая. Она может иметь острые углы и вообще может быть бесконечно извилистой. Мы настаиваем на ненулевой стороне квадрата, чтобы избежать тривиального ответа, когда одна и та же точка представляет все четыре угла.

Первое печатное упоминание о задаче с квадратным колышком появилось в 1911 г. в ходе конференции на семинаре, который проводил Отто Тёплиц; судя по всему, было обещано доказательство. Однако никакого доказательства опубликовано не было. В 1913 г. Арнольд Эмч доказал, что это утверждение верно для гладких выпуклых кривых, но добавил, что услышал о задаче не от Тёплица, а от Обри Кемпнера. Это утверждение было доказано для выпуклых кривых, аналитических кривых (определяемых сходящимися степенными рядами), достаточно гладких кривых, кривых с симметрией, звездчатых дважды дифференцируемых кривых, пересекающих любую окружность в четырех точках…

В общем, вы поняли. Множество технических гипотез, но никакого общего доказательства и никаких контрпримеров. Может быть, да, может быть, нет. Кто знает?

Существуют обобщения. В Задаче о прямоугольном колышке спрашивается, действительно ли для любого действительного числа r³ 1 любая гладкая простая замкнутая кривая на плоскости содержит четыре вершины прямоугольника с отношением сторон r: 1. Доказан только случай квадратного колышка (r = 1). Существуют также несколько расширений на более высокие размерности при очень сильных ограничениях.

Невозможный маршрут Из мемуаров доктора Ватсапа

С тяжелым сердцем…

Я бросил перо, вновь охваченный горем. Дьявольское отродье! Махинации профессора Могиарти вызвали безвременную кончину одного из величайших детективов, когда-либо хромавших по улицам Лондона под видом пожилого русского торговца рыбой. Великолепнейший ум, с каким мне приходилось сталкиваться, выслежен преступником, который – пока Сомс не избавился от него такой страшной ценой! – имел касательство ко всем злодействам в нашем королевстве. За исключением того идиота, который постоянно ставит свой экипаж прямо под нашим окном, где его лошадь…

Позвольте вашему скромному летописцу утереть скупую мужскую слезу и поведать вам об этих трагических событиях.

Целую неделю Сомс пребывал в дурном настроении. Я заподозрил, что он чем-то расстроен, когда он начал навешивать на окно шестой замок и устанавливать третий пулемет Гатлинга.

– Можно и так сказать, – ответил он, когда я озвучил свои подозрения. – Вы бы тоже расстроились, если бы вам едва удалось увернуться от падающего рояля по дороге в парикмахерскую – фирмы Chickering, между прочим, я сразу понял по чугунной раме. Не успел я собраться с мыслями, как мне уже пришлось отпрыгивать с пути ломовой телеги с пивной бочкой, которую понесла четверка лошадей – и которая взорвалась через мгновение после того, как я предусмотрительно укрылся за удачно подвернувшейся стенкой. Эта стенка тут же обрушилась в глубокую яму, что чуть не выбило меня из того скромного равновесия, которое мне удавалось еще сохранять, но я умудрился удержаться наверху, воспользовавшись крюком-кошкой, который всегда ношу в кармане на случай подобных происшествий. Для удобства он складывается, и веревка на нем легкая, но прочная. После этого ситуация несколько осложнилась.

Если бы я хуже знал своего друга, то подумал бы, что он потрясен.

– А вам не пришло в голову, Сомс, что кто-то, может быть, хочет навредить вам?

Он уважительно фыркнул на мою проницательность (по крайней мере, мне так показалось) и уверенно заявил:

– Это Могиарти. Но на этот раз я правильно его оценил. Прямо сейчас, пока мы с вами беседуем, реализуется мой хитрый план и все полицейские Лондона набрасываются на этого… Веллингтона преступного мира… и его миньонов. Скоро все они окажутся за решеткой, и тогда… веревка!

В дверь постучали, и появился какой-то уличный мальчишка.

– Телеграмма для его милости! – Сомс взял клочок бумаги и вручил мальчишке двухпенсовую монету.

– Нынче это стоит шесть пенсов, – заявил мальчишка.

– Кто это сказал?

– Тот, через дорогу, дяденька. Этот мистер Шер…

– Если ты не исчезнешь сейчас же, добавлю подзатыльник, – сказал Сомс. Мальчишка ушел, недовольно бормоча что-то себе под нос. Сомс развернул сложенную бумагу. – Несомненно, известие об успехе опера… – не договорив, он умолк.

– Что такое? – с тревогой спросил я. Лицо Сомса смертельно побледнело.

– Могиарти ушел!

– Как?

– Под видом полицейского.

– Хитрый дьявол!

– Но я знаю, куда он направился, Ватсап. У вас десять минут, чтобы сбегать домой и собрать вещи. После этого мы отправимся в путь: сначала на пароме на материк, потом на нескольких поездах, в карете, в бричке, в омнибусе и на двух осликах. По одному на каждом.

– Но… Сомс! Мы с Беатрис женаты меньше месяца! Я не могу уехать…

– Вашей молодой жене придется со временем привыкнуть к подобным вещам, Ватсап, если мы собираемся продолжать нашу совместную деятельность

– Это правда, но…

– Поверьте мне, самое время начать. Разлука укрепляет сердечную привязанность. Собака – лучший друг… в общем, достаточно клише. Ее брат позаботится о ней, пока вы будете в отъезде. Шести недель должно хватить.