Proceedings of the Royal Society B: Biological Sciences 278 (2011) 1373–1380.
Многоугольники навсегда
Хотя может показаться, что эта фигура будет увеличиваться до бесконечности, на самом деле она всегда остается в пределах ограниченной области на плоскости: круга радиусом приблизительно 8,7.
Отношение радиусов окружности, описанной вокруг правильного n-угольника, и окружности, вписанной в него, равно sec π/n, где sec – это тригонометрическая функция секанс, а угол измеряется в радианах. (Если хотите измерять угол в градусах, замените π на 180°.) Таким образом, для любого n радиус окружности, описанной вокруг правильного n-угольника на рисунке, равен
S = sec π/3 × sec π/4 × sec π/5 × … × sec π/n[38].
Мы хотим узнать предел этого произведения при n, стремящемся к бесконечности. Возьмем логарифм:
lnS = lnsec π/3 + lnsec π/4 + lnsec π/5 + … + lnsec π/n.
Пока x мал, lnsec x ~ x²/2, так что этот ряд можно сравнить с рядом
1/3² + 1/4² + 1/5² + … + 1/n²,
который при n, стремящемся к бесконечности, сходится. Следовательно, lnS конечен, так что и S конечно. Сумма членов ряда до n = 1 000 000 дает 8,7 в качестве разумной оценки предела.
Я узнал об этой задаче, а также о приведенном ответе из книжного обзора Харольда Боаса[39]. Этот автор нашел эту задачу в книге «Математика и воображение» Эдварда Каснера и Джеймса Ньюмена, изданной в 1940 г. Он пишет: «Может быть, если этот рисунок воспроизвести в достаточном числе книг, этот забавный пример станет частью стандартного набора задач занимательной математики».
Я стараюсь, Харольд.
Приключения гребцов
Мы с Сомсом нашли еще два варианта распределения весел, не считая зеркально симметричных:
– Несмотря на всю механическую сложность задачи, – сказал Сомс, – в конечном итоге она сводится к простой арифметике. Нам нужно разделить числа от 0 до 7 на две группы – так, чтобы сумма чисел в каждой из них равнялась 14.
– Если мы знаем один такой набор, то второй определяется автоматически и тоже дает сумму 14.
– Да, Ватсап, это очевидно: просто берем числа, которые не вошли в первый набор.
– Я согласен, что это тривиально, Сомс, но это подразумевает, что мы можем использовать набор, содержащий 0; это означает, что заднее весло мы размещаем слева (при необходимости мы всегда можем взять зеркально симметричный вариант). Таким образом мы снижаем число вариантов, которые необходимо рассмотреть.
– Это правда.
Теперь рассуждения шли практически сами собой.
– Если в набор входит также 1, – заметил я, – то остальные два числа в сумме дают 13, так что это должны быть 6 и 7, что дает 0167. Если там нет 1, но есть 2, то единственный возможный вариант – 0257. Если вариант начинается с 03, возникает два следствия: 0347 и 0356. Вариант, начинающийся с 04, можно не рассматривать, поскольку получить 10 сложением двух чисел из 5, 6, 7 невозможно. Аналогично отвергаем 05, 06 и 07.
– Итак, вы пришли к выводу, – подвел итог Сомс, – что единственные возможные варианты, исключая симметрию право-лево, – это
0167 0257 0356 0347
Но 0257 – это немецкий вариант, а 0347 – итальянский. Остаются два, те самые, что выложил из спи…
Он внезапно вскочил и напрягся.
– Святые угодники!
– Что, Сомс?
– Мне только что пришло в голову, Ватсап, извините за каламбур, что эта спичка… – он помахал передо мной какой-то горелой спичкой… – это не редкая ранняя спичка Конгрива, как я воображал, но одна из бесшумных спичек Ирини. Когда подорвался его профессор химии, Ирини пришло в голову заменить бертолетову соль в головке спички двуокисью свинца.
– Ах. Это имеет значение, Сомс?
– Еще какое, Ватсап. Это позволяет пролить совершенно новый свет… опять же, извините за каламбур… на одно из самых невероятных наших нераскрытых дел.
– Замечательное дело перевернутого чайника! – воскликнул я.
– Вот именно, Ватсап! Итак, если в ваших записях сохранилась информация о том, справа или слева от мумифицированного попугая лежала та спичка…
Анализ Сомса основан на:
Maurice Brearley, 'Oar arrangements in rowing eights', in Optimal Strategies in Sports (ed. S. P. Ladany and R. E. Machol), North-Holland 1977.
John Barrow, One Hundred Essential Things You Didn't Know You Didn't Know, W. W. Norton, New York 2009.
Как и предупреждал Сомс, это лишь первоначальный упрощенный подход к весьма сложной проблеме.
Кстати говоря, Университетская гонка 1877 г. закончилась ничьей – единственный случай в истории этих состязаний.
Кольца из правильных многогранников
Джон Мейсон и Теодорус Деккер нашли более простые методы доказательства невозможности, чем те, которыми пользовался Сверчковский. При склеивании двух одинаковых тетраэдров гранями каждый из них становится как бы отражением другого в их общей грани.
Начнем с одного тетраэдра. У него четыре грани и, соответственно, четыре таких отражения; назовем их r1, r2, r3 и r4. Каждое отражение ставит все на прежнее место, если проделать операцию дважды, так что r1r1 = e, где e – это нулевая трансформация («ничего не делать»). То же можно сказать и об остальных отражениях. Таким образом, все комбинации нескольких отражений представляют собой произведения вроде такого:
r1r4r3r4r2r1r3r1,
где последовательность индексов 14342131 может быть любой последовательностью чисел 1, 2, 3, 4, где ни одно число не встречается два раза подряд. К примеру, последовательности 14332131 быть не может. Причина в том, что здесь r3r3 – это одно и то же отражение, проделанное дважды, то есть e, которое не производит никакого действия и потому может быть исключено.
Если такая цепочка замыкается, то очередное отражение, примененное к крайнему тетраэдру в цепочке, дает тетраэдр, который совпадает с первоначальным. Таким образом, мы получаем уравнение вида
r1r4r3r4r2r1r3r1 = e
(только более длинное и сложное), где e означает «ничего не делать». Записав формулы для четырех отражений и воспользовавшись подходящими алгебраическими методами, можно доказать, что такое уравнение не выполняется никогда. Подробности см.:
T. J. Dekker, On reflections in Euclidean spaces generating free products, Nieuw Archief voor Wiskunde 7 (1959) 57–60.
M. Elgersma and S. Wagon, Closing a Platonic gap, Mathematical Intelligencer in the press.
J. H. Mason, Can regular tetrahedrons be glued together face to face to form a ring? Mathematical Gazette 56 (1972) 194–197.
H. Steinhaus, Problem 175, Colloquium Mathematicum 4 (1957) 243.
S. Swierczkowski, On a free group of rotations of the Euclidean space, Indagationes Mathematicae 20 (1958) 376–378.
S. Swierczkowski, On chains of regular tetrahedra, Colloquium Mathematicum 7 (1959) 9–10.
Невозможный маршрут
– Как вы правильно сказали, вы их не видите, – сказал Сомс. – Вы же знаете мои методы: воспользуйтесь ими.
– Очень хорошо, Сомс, – ответил я. – Вы всегда говорили, что нужно отбросить все несущественное. Поэтому я повторю свои рассуждения, а чтобы устранить всякую мыслимую возможность ошибки, представлю задачу в простейшем виде. Я пронумерую области на карте – вот так. Их пять. Затем я нарисую диаграмму – кажется, она называется графом, – на которой схематически покажу эти области и связи между ними.
Он молчал с непроницаемым выражением лица.
– Мы должны попасть из области 1 в область 5, причем мост A должен быть последним. Если начинать из 1, единственным оставшимся вариантом будет пересечь мост B, затем неизбежно последуют C и D. Далее мы должны воспользоваться мостом E или F. Скажем, мы выбрали мост E. Далее мы не можем воспользоваться F, потому что это приведет нас в область 4, из которой далее пути для нас нет. Однако мы не можем воспользоваться и мостом A, потому что это приведет нас в область 1, из которой пути нет. То же произойдет, если мы выберем F вместо E. Я закончил.
– Почему, Ватсап?
– Потому, Сомс, что я исключил невозможное, – он поднял бровь. – Поэтому то, что останется, каким бы невероятным оно ни казалось, – продолжал я, – должно быть…
– Продолжайте.
– Но, Сомс, ничего не остается! Следовательно, задача не имеет решения!
– Неверно. Я уже сказал вам, что решений здесь восемь.
– Тогда вы, вероятно, солгали мне об условиях задачи.
– Нет.
– Тогда я в тупике. Что я упустил?
– Ничего.
– Но…
– Вы кое-что впустили, Ватсап. Вы слишком многое приняли за данность. Вы ошибочно решили, что маршрут не должен выходить за пределы нарисованной мной карты.
– Но вы же сказали, что дальше реки текут до границ Швейцарии и дальше, а нам нельзя пересекать границу.
– Да. Но на карте изображена не вся Швейцария. Откуда течет эта река?
– О-ох! – я хлопнул себя ладонью по лбу.
– Кто? Бог?
– Просто непроизвольное выражение. Я браню себя за собственную глупость, Сомс. Не «Бог», скорее просто «О-ох!».
– Я посоветовал бы вам избегать этого выражения, Ватсап. Оно вам не идет, да и модным никогда не станет.