Математические головоломки — страница 5 из 21

Вот пример (по-прежнему в левой колонке стоит то, что говорит ваш приятель):


В тот момент, когда у вас получилось число 12, т. е. выражение, не содержащее больше неизвестного х, вы и прерываете товарища, сообщив ему, что теперь у него получилось 12.

Немного поупражнявшись, вы легко сможете показывать своим приятелям такие «фокусы».

Мнимая нелепость

ЗАДАЧА

Вот задача, которая может показаться совершенно абсурдной:

Чему равно 84, если 8 · 8 = 54?

Этот странный вопрос далеко не лишен смысла, и задача может быть решена с помощью уравнений.

Попробуйте расшифровать ее.


РЕШЕНИЕ

Вы догадались, вероятно, что числа, входящие в задачу, написаны не по десятичной системе, – иначе вопрос «чему равно 84» был бы нелепым. Пусть основание неизвестной системы счисления есть х. Число «84» означает тогда 8 единиц второго разряда и 4 единицы первого, т. е.


«84» = 8х + 4.


Число «54» означает 5х + 4.

Имеем уравнение 8 · 8 = 5х + 4, т. е. в десятичной системе 64 = 5x + 4, откуда x = 12.

Числа написаны по двенадцатеричной системе, и «84» = 8 · 12 + 4 = 100. Значит, если 8 · 8 = «54», то «84» = 100.

Подобным же образом решается и другая задача в этом роде:

Чему равно 100, когда 5 · 6 = 33?

Ответ: 81 (девятеричная система счисления).

Уравнение думает за нас

Если вы сомневаетесь в том, что уравнение бывает иной раз предусмотрительнее нас самих, решите следующую задачу.

Отцу 32 года, сыну 5 лет. Через сколько лет отец будет в 10 раз старше сына?


РЕШЕНИЕ

Обозначим искомый срок через х. Спустя х лет отцу будет 32 + х лет, сыну 5 + х. И так как отец должен тогда быть в 10 раз старше сына, то имеем уравнение


32 + х = 10 (5 + х).


Решив его, получаем х = –2.

«Через минус 2 года» означает «два года назад». Когда мы составляли уравнение, мы не подумали о том, что возраст отца никогда в будущем не окажется в 10 раз превосходящим возраст сына – такое соотношение могло быть только в прошлом. Уравнение оказалось вдумчивее нас и напомнило о сделанном упущении.

Курьезы и неожиданности

При решении уравнений мы наталкиваемся иногда на ответы, которые могут поставить в тупик малоопытного математика. Приведем несколько примеров.

I. Найти двузначное число, обладающее следующими свойствами. Цифра десятков на 4 меньше цифры единиц. Если из числа, записанного теми же цифрами, но в обратном порядке, вычесть искомое число, то получится 27.

Обозначив цифру десятков через х, а цифру единиц – через у, мы легко составим систему уравнений для этой задачи:


Подставив во второе уравнение значение х из первого, найдем:


а после преобразований:


36 = 27.


У нас не определились значения неизвестных, зато мы узнали, что 36 = 27… Что это значит?

Это означает лишь, что двузначного числа, удовлетворяющего поставленным условиям, не существует и что составленные уравнения противоречат одно другому.

В самом деле: умножив обе части первого уравнения на 9, мы найдем из него:


9y – 9x = 36,


а из второго (после раскрытия скобок и приведения подобных членов):


9у – 9x = 27.


Одна и та же величина 9у – 9х согласно первому уравнению равна 36, а согласно второму 27. Это безусловно невозможно, так как 36 ≠ 27.

Подобное же недоразумение ожидает решающего следующую систему уравнений:


Разделив первое уравнение на второе, получаем:


ху = 2,


а сопоставляя полученное уравнение со вторым, видим, что



т. е. 4 = 2. Чисел, удовлетворяющих этой системе, не существует. (Системы уравнений, которые, подобно сейчас рассмотренным, не имеют решений, называются несовместными.)

II. С иного рода неожиданностью встретимся мы, если несколько изменим условие предыдущей задачи. Именно будем считать, что цифра десятков не на 4, а на 3 меньше, чем цифра единиц, а в остальном оставим условие задачи тем же. Что это за число?

Составляем уравнение. Если цифру десятков обозначим через х, то число единиц выразится через х + 3. Переводя задачу на язык алгебры, получим:


Сделав упрощения, приходим к равенству 27 = 27.

Это равенство неоспоримо верно, но оно ничего не говорит нам о значении х. Значит ли это, что чисел, удовлетворяющих требованию задачи, не существует?

Напротив, это означает, что составленное нами уравнение есть тождество, т. е. что оно верно при любом значении неизвестного х. Действительно, легко убедиться в том, что указанным в задаче свойством обладает каждое двузначное число, у которого цифра единиц на 3 больше цифры десятков:


14 + 27 = 41,

47 + 27 = 74,

25 + 27 = 52,

58 + 27 = 85,

36 + 27 = 63,

69 + 27 = 96.


III. Найти трехзначное число, обладающее следующими свойствами:

1) цифра десятков 7;

2) цифра сотен на 4 меньше цифры единиц;

3) если цифры этого числа разместить в обратном порядке, то новое число будет на 396 больше искомого.

Составим уравнение, обозначив цифру единиц через х:


100x + 70 + x – 4 – [100(x – 4) + 70 + x] = 396.


Уравнение это после упрощений приводит к равенству


396 = 396.


Читатели уже знают, как надо толковать подобный результат. Он означает, что каждое трехзначное число, в котором первая цифра на 4 меньше третьей[2], увеличивается на 396, если цифры поставить в обратном порядке.

До сих пор мы рассматривали задачи, имеющие более или менее искусственный, книжный характер; их назначение – помочь приобрести навык в составлении и решении уравнений. Теперь, вооруженные теоретически, займемся несколькими примерами задач практических – из области производства, обихода, военного дела, спорта.

В парикмахерской

ЗАДАЧА

Может ли алгебра понадобиться в парикмахерской? Оказывается, что такие случаи бывают. Мне пришлось убедиться в этом, когда однажды в парикмахерской подошел ко мне мастер с неожиданной просьбой:

– Не поможете ли нам разрешить задачу, с которой мы никак не справимся?

– Уж сколько раствора испортили из-за этого! – добавил другой.

– В чем задача? – осведомился я.

– У нас имеется два раствора перекиси водорода: 30-процентный и 3-процентный. Нужно их смешать так, чтобы составился 12-процентный раствор. Не можем подыскать правильной пропорции…

Мне дали бумажку, и требуемая пропорция была найдена.

Она оказалась очень простой. Какой именно?


РЕШЕНИЕ

Задачу можно решить и арифметически, но язык алгебры приводит здесь к цели проще и быстрее. Пусть для составления 12-процентной смеси требуется взять х граммов 3-процентного раствора и у граммов 30-процентного. Тогда в первой порции содержится 0,03x граммов чистой перекиси водорода, во второй 0,3y, а всего


0,03x + 0,3y.


В результате получается (х + у) граммов раствора, в котором чистой перекиси должно быть 0,12 (х + у). Имеем уравнение


0,03х + 0,3у = 0,12(х + у).


Из этого уравнения находим х = 2y, т. е. 3-процентного раствора надо взять вдвое больше, чем 30-процентного.

Трамвай и пешеход

ЗАДАЧА

Идя вдоль трамвайного пути, я заметил, что каждые 12 минут меня нагоняет трамвай, а каждые 4 минуты я сам встречаю трамвай. И я и трамваи движемся равномерно.

Через сколько минут один после другого покидают трамвайные вагоны свои конечные пункты?


РЕШЕНИЕ

Если вагоны покидают свои конечные пункты каждые х минут, то это означает, что в то место, где я встретился с одним из трамваев, через х минут приходит следующий трамвай. Если он догоняет меня, то в оставшиеся 12 – х минут он должен пройти тот путь, который я успеваю пройти в 12 минут. Значит, тот путь, который я прохожу в 1 минуту, трамвай проходит  в минут.

Если же трамвай идет мне навстречу, то он встретит меня через 4 минуты после предыдущего, а в оставшиеся (x – 4) минуты он пройдет тот путь, который я успел пройти в эти 4 минуты. Следовательно, тот путь, который я прохожу в 1 минуту, трамвай проходит в  минуты. Получаем уравнение


Отсюда x = 6. Вагоны отходят каждые 6 минут. Можно также предложить следующее (по сути дела арифметическое) решение задачи. Обозначим расстояние между двумя следующими один за другим трамваями через а. Тогда между мной и трамваем, двигающимся навстречу, расстояние уменьшается на  в минуту (так как расстояние между только что прошедшим трамваем и следующим, равное а, мы вместе проходим за 4 минуты). Если же трамвай догоняет меня, то расстояние между нами ежеминутно уменьшается на . Предположим теперь, что я в течение минуты шел вперед, а затем повернул назад и минуту шел обратно (т. е. вернулся на прежнее место). Тогда между мной и трамваем, двигавшимся вначале мне навстречу, за первую минуту расстояние уменьшилось на , а за вторую минуту (когда этот трамвай уже догонял меня) на . Итого за 2 минуты расстояние между нами уменьшилось на . То же было бы, если бы я стоял все время на месте, так как в итоге я все равно вернулся назад. Итак, если бы я не двигался, то за минуту (а не за две) трамвай приблизился бы ко мне на , а все расстояние а он проехал бы за 6 минут. Это означает, что мимо неподвижно стоящего наблюдателя трамваи проходят с интервалом в 6 минут.

Вечеринка

ЗАДАЧА

На вечеринке было 20 танцующих. Мария танцевала с семью танцорами, Ольга – с восемью, Вера – с девятью и так далее до Нины, которая танцевала со всеми танцорами. Сколько танцоров (мужчин) было на вечеринке?


РЕШЕНИЕ

Задача решается очень просто, если удачно выбрать неизвестное. Будем искать число не танцоров, а танцорок, которое обозначим через