Как выглядит эта альтернативная версия? Нарисуйте монеты, соединенные нитями. Один конец каждой нити приклеен к какой-либо монете, а другой – либо к соседней монете, либо к столу. Игроки поочередно разрезают нити ножницами. Если монета высвобождается, она достается вам, и вы зарабатываете право на еще один ход. Игра длится до тех пор, пока игроки не разберут все монеты. Побеждает тот, у кого больше монет.
Никаких квадратиков – лишь монеты. Никаких отрезков – лишь натянутые нити. Но, по сути, игра та же самая. Не меняя принципиальную структуру, Элвин вывернул «Точки-клеточки» наизнанку.
Зачем? Да просто так. Забавы ради. «Пусть мыслители мыслят, а мечтатели мечтают, – писал Эдуард Люка, – не тревожась о том, что иногда занимаются чем-то несерьезным или бесполезным, ибо, по словам мудреца Анаксагора, во всём есть часть всего».
Эта философия вдохновляла математические изыскания на протяжении тысячелетий, и она прослужит нам еще тысячелетия. Пусть мыслители мыслят. Пусть мечтатели мечтают. Пусть студенты чертят закорючки на полях конспектов лекций. Не проводите границу между практичным и непрактичным, полезным и бесполезным, пустым и идеальным. Это области одного и того же необитаемого континента, одной и той же прекрасной девственной земли, которую мы лишь начали изучать.
Шведская доска. Границы поля уже нарисованы.
Точки-треугольнички. Правила те же, но вы играете на треугольном поле и сражаетесь за равносторонние треугольники. На мой взгляд, это делает игру красивее (к тому же треугольники легче начертить). Идеальное решение, если вас утомил классический вариант игры, а курьер с пиццей еще не прибыл.
Назарено. В этом усовершенствованном варианте игры из книги Андреа Анджолино «Отточенный карандаш и игры на бумаге» меняются два правила. Во-первых, вы можете проводить прямую линию любой длины, если она не пересекает уже начерченные линии. (Таким образом, вы можете дорисовать несколько квадратов сразу.) Во-вторых, если вы дорисовали квадрат, то не получаете дополнительный ход.
Если новое правило в «Точках-треугольничках» меняет вид знакомой игры, то в «Назарено» все наоборот: в знакомой игре открываются новые горизонты.
Квадратный полип. Свихнувшийся визионер Уолтер Джорис в книге «Сто стратегических игр с карандашом и бумагой» предлагает несколько игр, напоминающих «Точки-клеточки». Моя любимая – 90-я по счету: «Квадратный полип». Участвуют два игрока. Понадобятся цветные карандаши.
1. Нарисуйте поле 9 × 9 точек (или поменьше, если вы новичок; или побольше, если вы знаток) и по очереди рисуйте квадратные полипы. Это квадраты с двумя ответвлениями, например:
2. Стремитесь захватить как можно больше квадратов. Каждый полип автоматически занимает квадрат 1 × 1, но умелый игрок может получить области покрупнее и более причудливой формы.
3. Линии не должны пересекаться[10]. Это правило позволяет сорвать планы противника, выпустив одно-единственное смертоносное щупальце (но будьте осторожны: противник может настолько же легко сорвать ваши планы).
4. Играйте до тех пор, пока не останется ни одного хода. Выигрывает тот, кто занял наибольшую часть поля.
Ростки
Из школьной геометрии мы выносим одну пренеприятную истину: размер имеет значение. И в самом деле, размер – одно из основополагающих свойств в материальном мире. Углы бывают острыми, прямыми или тупыми. Фигуры имеют длину, площадь или объем. Порция мокко с соленой карамелью может быть большой, маленькой или средней. Так или иначе все сводится к размеру. Черт возьми, само название школьного предмета недвусмысленно об этом говорит: в переводе с древнегреческого оно означает «землемерие».
Вас раздражает такая зацикленная на размере философия? Тогда вам понравится топология. Там фигуры растягиваются, словно резина, податливы, словно пластилин, раздуваются, словно воздушные шары. Не фигуры, а трансформеры! В этом текучем мире лавовых ламп размер не имеет значения. По сути, о размерах там не идет и речи.
Топология ищет более глубокие истины.
Хотите узнать какие? Для первого знакомства лучше всего подойдет игра «Ростки». Какие точки можно соединить? Сколько областей возникнет? В чем разница между «внутри» и «снаружи»? Придержите свои шляпы – или их топологические эквиваленты – и наслаждайтесь игрой, правила которой легко поймет любой ребенок, но перебрать варианты развития событий не под силу ни одному суперкомпьютеру.
Сколько игроков? Двое (или больше).
Что потребуется? Разноцветные карандаши и бумага. Вначале нарисуйте несколько точек. На первое время ограничьтесь тремя-четырьмя.
В чем цель? Побеждает тот, кто сделает последний ход в игре, не оставив противнику ни одного варианта.
Какие правила?
1. Во время каждого хода рисуйте одну линию (прямую или кривую), соединяющую две точки либо возвращающуюся к исходной точке, и ставьте новую точку где-нибудь на этой линии.
2. Всего два ограничения: (1) линии не могут пересекать себя или друг друга; (2) из каждой точки может исходить не более трех линий.
3. В конце концов все возможности будут исчерпаны. Выигрывает тот, кто сделает последний ход.
Прелесть «Ростков» в гибкости линий. Неважно, какие они: прямые, плавные кривые или витиеватые спирали; значение имеют только соединяемые точки. Можете даже изобразить свою подпись. Шестиклассница Анджела так и поступила, когда мы попробовали сыграть, и, хотя в принципе она нарушила правило (линии самопересекались), это настолько впечатляло, что я не возражал.
Такая гибкость отражает суть топологии: вещи могут быть совершенно непохожими друг на друга, но иметь одинаковый функционал.
Рассмотрим вариант, где вначале на игровом поле всего одна точка. Первый игрок волей-неволей рисует петлю и ставит новую точку на ней. Второй игрок должен соединить две точки. Кажется, возможны два варианта: нарисовать линию внутри петли или снаружи.
Но погодите-ка. Представьте, что вы чертите линии на сфере. Особо ничего не меняется, но теперь неважно, рисуете ли вы вторую линию «внутри» или «снаружи». С точки зрения топологии эти два хода идентичны. Таким образом, в действительности у второго игрока нет выбора.
А как насчет игры, которая начинается с двух точек? У первого игрока есть лишь два варианта: соединить эти две точки или нарисовать петлю. Неважно, будет ли вторая точка «внутри» или «снаружи» петли. Топологически нет разницы.
Неужели топологи не замечают различий и все вещи для них на одно лицо? «Победа» топологически равноценна «поражению»? «Хорошо» топологически то же самое, что «плохо»? Кошка топологически эквивалентна рыбке и в аквариум нужно поставить маленький кошачий лоток?
Решайте сами, если у вас есть домашние питомцы. Но, играя в «Ростки», не стоит беспокоиться. Не все ходы эквивалентны. По сути дела, когда все начинается с двух точек, уже ко второму ходу возникает шесть топологически разных вариантов. Свободы становится все больше.
В «Точках-клеточках» мы имели дело с жесткой, прямолинейной геометрией, подобной градостроительному плану. «Ростки», напротив, свободолюбивая игра, похожая на хаос карнавального шествия.
Место и время рождения «Ростков» точно известны: Великобритания, Кембридж, вторая половина дня во вторник 21 февраля 1967 года.
Родители игры, кибернетик Майк Патерсон и математик Джон Конвей, рисовали закорючки на листе бумаги, пытаясь изобрести новую игру. Майк предложил правило с добавлением новой точки, Джон предложил название. Так родились «Ростки»[11]. Они поделили честь открытия в соотношении 60/40 в пользу Майка: эта честная и точная пропорция впечатляет не меньше, чем само рождение игры.
В «Ростки» просто играть, но сложно перебрать все варианты. Анализ игры, начинающейся с шести точек, занял у Дениса Моллисона 47 страниц. Никто не превысил эту планку до 1990 года, когда компьютер Bell Labs перебрал все варианты игры, начинающейся с 11 точек. На момент написания этой главы перебраны все варианты для игры, начинающейся с 40 точек, хотя Конвей перед кончиной в 2020 году скептически высказался на сей счет: «Вы поверите, услышав, что кто-то изобрел машину, которая может сочинить пьесу, достойную пера Шекспира? Это слишком сложно».
Отпугнула ли эта сложность игроков-любителей? Ничуть.
«На следующий день после того, как проросли "Ростки", – пишет Конвей, – в них стали играть все подряд. За чаем и кофе небольшие компании не могли взгляда оторвать от нелепых или фантастических вариантов развития игры… Общему поветрию поддались и секретари… Рисунки с "Ростками" можно было обнаружить в самых неожиданных местах… Даже мои дочки, которым три и четыре года, играли в них, хотя обычно я выигрывал».
Потому что среди разделов современной математики топология – одна из наиболее (1) динамичных, (2) причудливых, (3) полезных и (4) красивых.
Эпитетов много, так что разберем их по порядку.
Топология динамична. Топологи живут в изменчивом мире растягивающейся резины, расплавленного металла и тающего мороженого. Они постоянно ищут инварианты: свойства, которые остаются неизменными, несмотря на все перипетии.
Наиболее известный инвариант – эйлерова характеристика. Для «Ростков» все сводится к простому уравнению (это заметил Эрик Соломон): точки + области = линии + фигуры.