Математическое мышление. Книга для родителей и учителей — страница 11 из 54

Математика поразительно легко поддается сжатию: вы можете долго и напряженно трудиться, шаг за шагом прорабатывая один процесс или идею с нескольких точек зрения. Но как только вы по-настоящему поймете нечто и сможете увидеть это как единое целое, скорее всего, произойдет очень сильное ментальное сжатие. Вы можете отправить эту информацию в архив, а при необходимости быстро и полностью восстановить и использовать ее всего лишь за один шаг в рамках другого ментального процесса. Озарение, которым сопровождается такое сжатие, — одна из истинных радостей математики (Thurston, 1990).

Многие ученики не считают, что математика дарит «истинную радость» — отчасти потому, что в их мозге сжатия не происходит. Мозг способен сжимать только концепции, но не правила и методы. Следовательно, у учеников, которые не мыслят концептуально, а воспринимают математику как список правил, подлежащих запоминанию, сжатия не происходит, и их мозг не может упорядочивать концепции и архивировать их, а пытается хранить длинные списки методов и правил. Именно поэтому важно воспитать концептуальный подход к математике — основу математического мышления.

Как насчет фактов?

Многие убеждены, что невозможно постоянно размышлять над математикой на концептуальном уровне, поскольку существует много фактов (например, 8 × 4 = 32), которые надо запомнить. Однако все факты можно осваивать и запоминать в рамках концептуального подхода. К сожалению, большинство учителей и родителей считают, что некоторые области математики основаны на фактах (например, о числах) и их необходимо бездумно оттачивать и быстро заучивать. Но такой подход в первые годы в школе вредит ученикам, заставляя их думать, что преуспевать в математике — значит быстро вспоминать факты, и мешает им развивать математическое мышление.

Сами математические факты — лишь небольшая часть науки, и их лучше изучать путем применения чисел разными способами и в разных ситуациях. К сожалению, часто математические факты рассматриваются по отдельности и у учеников создается впечатление, будто это суть дисциплины и, что еще хуже, умение быстро восстанавливать такие факты в памяти — признак хорошего ученика. Обе эти идеи ошибочны, их нельзя внушать ученикам. Ведь именно они приводят к появлению разочаровавшихся учеников, боящихся математики.

Я росла в Англии в прогрессивную эпоху, когда начальные школы были ориентированы на развитие цельной личности, поэтому мне не приходилось учить наизусть таблицы сложения, вычитания и умножения. Я никогда не заучивала факты, но могу быстро сгенерировать любой из них, поскольку у меня есть чувство числа и я освоила эффективные способы анализа числовых комбинаций. Отказ от заучивания никогда не был сдерживающим фактором для меня. И я стала профессором математики, поскольку у меня есть чувство числа, овладеть которым для учеников гораздо важнее, чем запомнить факты. Процесс формирования этого чувства сводится к изучению математических фактов вместе с глубоким пониманием чисел и их соотношений.

Примерно у трети учеников страх перед математикой возникает после того, как они начинают сдавать тесты с ограничением времени (Boaler, 2014c). Сайен Бейлок и ее коллеги изучали мозг участников исследования с помощью МРТ и пришли к выводу, что математические факты хранятся в кратковременной памяти. Но когда ученики находятся в состоянии стресса (например, если им приходится отвечать на вопросы в условиях ограничения времени), кратковременная память блокируется и ученики не могут получить доступ к математическим фактам, которые они знают (Beilock, 2011). Когда ученики осознают, что не могут эффективно выполнять тесты с ограничением времени, они начинают тревожиться и теряют уверенность в своих математических способностях. Блокировка кратковременной памяти и связанная с этим тревога особенно распространены среди сильных учеников и девочек. По самым скромным оценкам, минимум треть учеников испытывает очень сильный стресс во время тестов с ограничением времени, причем независимо от своей успеваемости или уровня благосостояния. Если мы постоянно подвергаем учеников такому испытанию, можно считать их потерянными для математики.

Уже установлено, что страх перед математикой испытывают даже пятилетние дети, а тесты с ограничением времени — основная причина этого деструктивного состояния, которое частенько остается у человека на всю жизнь. На своих курсах в Стэнфордском университете я сталкиваюсь со многими студентами, которые испытали психологическую травму в связи с математикой, хотя и добились самых серьезных успехов в учебе. Когда я спрашиваю их, что вызвало у них такое отвращение к математике, многие говорят о том, что именно тесты во втором или третьем классе привели их к выводу, что математика не для них. Некоторые из этих студентов, особенно девушки, рассказывают, что им необходимо было все глубоко понимать (достойная цель). Но когда тесты с ограничением времени стали неотъемлемой частью уроков математики, у них возникло ощущение, что глубокое понимание не ценится или не требуется. Возможно, эти студенты выполняли другую, более важную работу на уроках математики, сосредоточившись на осмыслении и понимании, а тесты на скорость вызывают такие сильные эмоции, что ученики приходят к выводу, будто способность быстро запоминать факты — сама суть математики. Это очень печально. Последствия сосредоточения на запоминании и проведении тестов проявляются в том, что многие бросают математику, и сейчас в этой науке возник кризис (см. www.youcubed.org). Когда в пять лет моя дочь начала изучать таблицу умножения и сдавать тесты, она приходила домой в слезах. Это совсем не те эмоции, которые должны ассоциироваться с математикой, но если мы и впредь будем требовать от детей вспомнить математические факты за ограниченное время, мы не сможем ликвидировать тревогу и неприязнь к математике (Silva & White, 2013).

Что же сделать, чтобы помочь ученикам усвоить математические факты без тестов? Лучший способ стимулировать изучение фактов и формирование математического мышления — предлагать ученикам концептуальные задания, которые помогут им исследовать и понимать числа и факты о них. Исследователи головного мозга проанализировали поведение учеников, изучающих математику двумя способами. Один подход состоял в использовании стратегий. Например, чтобы запомнить, сколько будет 17 × 8, можно вычислить 17 × 10 (170) и вычесть из результата 17 × 2 (34). Другой способ — просто запомнить факт (17 × 8 = 136). Ученые пришли к выводу, что эти подходы подразумевают использование разных путей в головном мозге, и оба этих пути можно использовать всю жизнь. Но важнее другое: по данным того же исследования, ученики, которые использовали стратегии, добивались гораздо более высоких результатов по сравнению с теми, кто запоминал факты; они отвечали на вопросы теста с такой же скоростью и демонстрировали более правильный переход к новым задачам. Ученые пришли к выводу, что автоматизм следует вырабатывать за счет понимания соотношений между числами, которое достигается в процессе размышлений над числовыми стратегиями (Delazer et al., 2005).

В ходе другого важного исследования было установлено, что обучение эффективнее всего тогда, когда мы используем разные пути в головном мозге (Park & Brannon, 2013). Левое полушарие отвечает за обработку фактической и технической информации; правое — визуальной и пространственной. Ученые пришли к выводу, что изучение математики и результаты носят оптимальный характер, когда полушария мозга обмениваются информацией (Park & Brannon, 2013). Также выяснилось, что при работе над арифметическими задачами, например на вычитание, лучшие результаты получили ученики с самыми сильными связями между полушариями мозга. Это крайне важно для изучения математики. Получается, изучение формальной абстрактной математики, как в школьной учебной программе, более эффективно, когда дети используют визуальное и интуитивное математическое мышление.

В статье YouCubed «Свободное владение математикой без страха», которая оказалась в центре внимания ряда крупных новостных СМИ, мы представили все эти факты и задания, которые учителя и родители могут использовать, чтобы создать условия для формирования этих важных связей в головном мозге. Одна из математических игр, которую мы включили в статью, сразу после публикации стала очень популярной и распространилась с помощью твитов по всему миру.

Участвует несколько учеников. Каждый получает лист бумаги, на котором изображена матрица из 100 пустых ячеек. Первый игрок бросает два игральных кубика и использует выпавшие числа для построения массива в своей матрице из 100 ячеек. Участник может разместить этот массив на любом участке матрицы, но задача в том, чтобы максимально заполнить ее. Зарисовав массив ячеек в своей матрице, игрок записывает числовое выражение, описывающее его. Игра заканчивается, когда после бросания костей ни один игрок не может внести соответствующий массив ячеек в матрицу (рис. 4.2).



Рис. 4.2. Насколько близко к 100?


В этой игре ученики изучают числовые факты, например значение 2 × 12, но не это главное. Они размышляют над смыслом числовых фактов и над тем, что представляет собой 2 × 12 в визуальном и пространственном виде.

Есть еще одна игра, стимулирующая формирование сильных связей в головном мозге. В ней применяется совсем иной подход к математическим карточкам, который часто вредит детям, как в случае флеш-карточек, ориентированных на зубрежку и высокую скорость запоминания. Цель игры в том, чтобы подобрать карточки с одинаковыми ответами, представленными разными способами, без временных ограничений. Учителя раскладывают карточки на столе и предлагают ученикам по очереди выбирать как можно больше карточек с одинаковыми ответами (представленными в любом виде).

Например, числа 9 и 4 могут быть представлены в виде матрицы, группы предметов (костяшек домино и т. п.) и числового выражения. Подбирая карточки, ученик должен объяснить, почему он решил, что разные на вид карточки эквивалентны. Такое задание также помогает понять суть умножения на визуальном и пространственном уровне, что стимулирует формирование связей в мозге ученика и позволяет ему повторить математические факты. Чтобы усложнить задание, игру можно проводить с карточками, повернутыми лицевой стороной вниз, превратив ее в игру на запоминание. Полный набор карточек есть здесь: