Математическое мышление. Книга для родителей и учителей — страница 18 из 54

ПРИМЕР 5.2. ПОСЛЕДОВАТЕЛЬНОСТИ ПАЛОЧЕК КЮИЗЕНЕРА

Определите, сколько разных последовательностей можно составить для палочек любой длины. Например, для светло-зеленой палочки можно составить четыре последовательности.

Материал предоставлен Рут Паркер; задача используется на курсах MEC (Mathematics Education Collaborative).

И тут Рут показала учителям треугольник Паскаля и предложила им исследовать его связь с задачей с палочками Кюизенера и знаменитым треугольником (см. пример 5.3).

ПРИМЕР 5.3. ТРЕУГОЛЬНИК ПАСКАЛЯ

Потратив много сил на выполнение этого задания, учителя с удивлением обнаружили, что все их варианты находятся в треугольнике Паскаля. Именно этот момент растрогал Элизабет до слез, и я ее понимаю. Для любого человека, который воспринимал математику как совокупность несвязных процедур, а затем получил возможность исследовать визуальные и числовые закономерности, научившись видеть и понимать связи, это сильнейший опыт. Тогда Элизабет и обрела уверенность в своих интеллектуальных возможностях и способности самостоятельно обнаруживать математические идеи и связи.

С этого момента отношения Элизабет с математикой изменились, и она уже никогда не возвращалась к прошлому. Я встретилась с ней год спустя, когда она снова проходила курс Рут Паркер, чтобы освоить еще более эффективный подход к изучению математики. Элизабет рассказала мне обо всех замечательных изменениях, которые она внесла в свои методы преподавания, и о трепетном отношении ее подопечных к математике.

Опыт нового видения математики, который получила Элизабет, когда впервые узнала о математических связях, я постоянно использую в работе с разными детьми и взрослыми. И эмоции, которые они испытывают, прямо связаны с опытом обнаружения, изучения и осмысления математических связей.

5. Чудеса отрицательных координат

Этот пример связан с задачей, которую я использовала в работе со своей группой по подготовке учителей в Стэнфорде и с другими группами учителей. Она вызывает такое сильное воодушевление, что не рассказать о ней нельзя. Это одна из задач на рост закономерности, но с одним дополнением, которому я и хочу уделить особое внимание. Задачу придумал Карлос Кабана — замечательный учитель, с которым я работаю. В примере 5.4 показана задача, которую он обычно ставит ученикам.

ПРИМЕР 5.4. ЗАДАЧА НА ОТРИЦАТЕЛЬНОЕ ПРОСТРАНСТВО

1. Как выглядел бы рисунок 100?

2. Представьте себе, что вы могли бы продолжить построение этой модели в обратном направлении. Сколько ячеек было бы на рисунке –1? (Да, рисунок минус один, что бы это ни значило!)

3. Как выглядел бы рисунок –1?

На основе материалов Карлоса Кабаны.

Один из вопросов, поставленных в этой задаче, звучит так: сколько ячеек было бы на рисунке –1 (если бы нужно было продолжить закономерность в обратном направлении, сколько ячеек было бы на шаге –1)? Задавая этот вопрос учителям, я обнаружила, что им легко найти ответ. Гораздо более интересным и сложным был вопрос о том, как выглядел бы рисунок на шаге –1. Когда я включила этот вопрос в задачу, произошло кое-что поразительное. Решение (которое я не буду здесь раскрывать) требует напряженных размышлений; учителя шутили, что, когда они пытались найти это решение, у них заболела голова и произошло возбуждение синапсов. Существует ряд способов добраться до шага –1 и правильных вариантов визуального представления. Но и числовое решение не единственное. Задача перемещается в неизведанную и захватывающую область — анализ вопроса о том, что такое отрицательный квадратный корень. Некоторые учителя поняли, что им необходимо поразмышлять об отрицательном пространстве, а также о том, как выглядела бы ячейка, отображенная на себя. Когда я поставила эту задачу свой группе учителей из Стэнфорда, они от волнения перепрыгивали через столы и пытались представить отрицательное пространство, протыкая в бумаге отверстия, чтобы показать, как ячейки переходят туда. Один из учителей понял и рассказал другим о том, что эту функцию можно представить в виде параболы (рис. 5.16). Другой спросил меня, куда уйдет эта парабола — останется ли на положительной части оси ординат или примет отрицательное значение.


Рис. 5.16. Дилемма с параболой


Этот вопрос показался членам группы очень увлекательным, и они активно старались во всем разобраться. В конце занятия будущие учителя пришли к выводу, что испытали истинное воодушевление и знают, какие ощущения хотят вызывать у своих учеников на уроках.

Но что именно вызвало такое воодушевление? Когда недавно я поставила эту задачу ведущим учителям в Канаде, она так увлекла их, что я не могла заставить их остановиться. Кое-кто даже шутил по этому поводу. В Twitter появилось сообщение: «Джо Боулер не может оторвать нас от задачи, которую нам поставила».

Эта задача вызывает такое воодушевление, поскольку требует размышлений об отрицательном пространстве, выходе в другое измерение, что само по себе интересно. Математика позволяет сделать это, потому-то она так увлекательна. Кроме того, слушатели курса считали, что исследуют неизведанную область; они не искали ответ на вопрос, который знали преподаватель и составители учебников, и это усиливало их воодушевление. Когда слушатели курса задавали вопрос о направлении параболы, у них было ощущение, что они могут спросить обо всем, что математика — открытая наука и, обнаружив новую идею (ту же параболу), они могут развить ее с помощью следующего вопроса. Визуальное представление математической закономерности снова сыграло важнейшую роль в усилении вовлеченности.

Прежде чем задуматься, что значат все эти примеры в контексте разработки увлекательных задач, приведу еще один пример. На сей раз события разворачивались на уроке в третьем классе.

6. От фактов к воодушевлению

В главе 4 я говорила, что учителям стоит изменить способы стимулирования учеников к изучению математических фактов, а также о важности перехода от работы, которая часто травмирует учеников (тесты с ограничением времени, изучение конкретных фактов и долгие часы заучивания), к увлекательным занятиям, которые укрепляют важные связи в головном мозге. Чтобы помочь учителям внедрить такие перемены, мы с коллегами из YouCubed написали статью, упомянутую в предыдущей главе. Я разместила ее на нашем сайте в надежде на то, что ее смогут прочесть многие учителя. Но мы не могли предвидеть масштабов влияния этой статьи: ее цитировали крупные газеты США. Один из видов деятельности, о котором мы рассказывали учителям, дал положительный эффект иного рода. Они обменивались информацией о нем друг с другом в соцсетях, публикуя фотографии учеников, которые с удовольствием занимаются математикой и формируют важные связи в головном мозге.

Такую важность и популярность приобрела игра под названием «Насколько близко к 100?» (ее описание см. в предыдущей главе).

В числе прочих мой онлайн-курс прошла и после этого изменила свои методы преподавания математики Роуз Фернандес — учительница третьего класса калифорнийской школы, в которой минимум 40% учеников — из небогатых семей. Роуз повесила на стене плакат с перечнем семи хороших правил изучения математики, разработанных в YouCubed (см. главу 9), чтобы их видели все ученики. Она рассказала мне, с каким воодушевлением ее ученики играют в эту игру и какие важные математические возможности перед ними открылись. Роуз — вдумчивая учительница; она не только организовала игру для учеников, но и предложила им для начала ее обсудить. Кроме того, она подготовила дополнительные задания для тех, кто работает быстрее. Перед началом игры она предложила детям подумать, как использовать игральные кости в качестве математического инструмента. Роуз попросила их подбрасывать две кости и по очереди называть полученные числа и их произведения. Затем она задала важный вопрос: как умножение и площадь связаны друг с другом? Ученики тщательно проанализировали его. Потом Роуз предложила детям поработать в парах и подумать, чему они учатся в этой игре. Кроме того, она поставила задачу выполнить разложение чисел и найти разные способы их записи на обратной стороне своих листов, если они закончат задание раньше. Ученики играли с большим воодушевлением, а когда Роуз попросила их оценить свою удовлетворенность по шкале от одного до пяти, 95% детей поставили самую высокую оценку.

Вот что говорили ученики, размышляя над этой игрой.


«Это заставило меня думать».

«Было весело исследовать математику и изучать ее».

«Это дало мне возможность попрактиковаться в умножении».

«Это был забавный способ изучить математические факты».

«Я узнал, что умножение и площадь взаимосвязаны».

«Теперь я знаю связь между делением, умножением и площадью, потому что я могу себе ее представить!»

Уровень воодушевления учеников во время этой игры был таким же высоким, как и сила математики, которую они изучали. Они говорили не только об удовольствии от игры, но и о математических концепциях, которые они изучали. Дети размышляли об умножении, делении и площади на визуальном уровне, исследуя математические факты с удовольствием и вовлеченностью. Это куда интереснее заучивания таблицы умножения!

Во всех этих примерах в центре оказалась математическая задача, подкрепленная грамотным подходом к преподаванию. Ниже представлен обзор важных элементов постановки этих шести задач, которые можно применить ко всем математическим задачам независимо от этапа обучения. Вдобавок во всех случаях ученики взаимодействовали друг с другом, иногда размышляя самостояте