Математическое мышление. Книга для родителей и учителей — страница 37 из 54

• Я могу умножать многочлен на многочлен.

• Я могу разложить многочлен на множители.

• Я могу решать квадратные уравнения методом разложения на множители.

• Я могу построить приближенный график с помощью точек пересечения квадратичной функции с осями координат и других легко определяемых точек.


Раздел 8 — квадратичные функции

• Я могу найти координаты экстремума квадратичной функции, дополнив ее выражение до полного квадрата.

• Я могу построить график квадратичной функции, определив основные характеристики: отрезки, отсекаемые на координатных осях, максимальное и (или) минимальное значение, симметрия и поведение графика функции на границах области определения.

• Я могу определить, как влияет на график функции то или иное преобразование ее формулы.

• Я могу построить диаграмму рассеяния, используя метод наименьших квадратов, и применить его для составления прогнозов.


Раздел 9 — квадратные уравнения

• Я могу объяснить, почему суммы и произведения либо рациональные, либо иррациональные.

• Я могу решать квадратные уравнения методом дополнения до полного квадрата.

• Я могу решать квадратные уравнения методом нахождения квадратных корней.

• Я могу решать квадратные уравнения с помощью формулы определения корней квадратного уравнения.


Раздел 10 — нелинейные соотношения

• Я могу применить свойства степенных функций, чтобы упростить алгебраические выражения с рациональными показателями степени.

• Я могу построить график степенной функции с показателем степени 1/2 или 1/3, определив ее основные характеристики: отрезки, отсекаемые на координатных осях, максимальное и (или) минимальное значения и поведение графика функции на границах области определения.

• Я могу построить график кусочно-ломаной функции, в том числе ступенчатой и функции модуля, определив ее основные характеристики: отрезки, отсекаемые на координатных осях, максимальное и (или) минимальное значения и поведение графика функции на границах области определения.


Раздел 11 — показательные функции и уравнения

• Я могу показать, что показательная функция имеет один и тот же множитель при равных интервалах изменения переменной.

• Я могу указать случаи, когда изменение скорости описывается одним и тем же множителем за равные промежутки времени и которые могут быть описаны с помощью показательных функций.

• Я могу использовать графики или таблицы, чтобы сравнить скорость изменения линейной, квадратичной и показательной функций.

• Я могу преобразовать показательную функцию, используя ее свойства.

• Я могу использовать параметры показательной функции, взятые из реальной жизни.

• Я могу построить график показательной функции, определив ее основные характеристики: отрезки, отсекаемые на координатных осях, максимальное и (или) минимальное значения, асимптоты и поведение функции на границах области ее определения.

• Я могу построить диаграмму рассеяния, используя показательную функцию в методе наилучшего приближения, и применить ее для составления прогнозов.

Источник: предоставлено Лизой Хенри.

2. Взаимооценивание

Взаимооценивание — это стратегия, аналогичная самооценке, которая также подразумевает предоставление ученикам четких критериев, но для оценки работы друг друга, а не своей. Оценивая работу знакомого, ученики получают дополнительную возможность для осмысления материала по математике, который им необходимо изучить. Как показала практика, взаимооценивание оказалось весьма эффективным, отчасти потому, что ученики часто гораздо больше открыты для критических замечаний или предложений о внесении изменений от других учеников; кроме того, ровесники обычно используют способ коммуникации, благодаря которому им легче понимать друг друга.

Один из моих любимых методов взаимооценивания — «две звезды и пожелание» (пример 8.3). Ученикам предлагают проанализировать работу одноклассников и с помощью определенных критериев или без них выбрать два фрагмента этой работы, выполненные хорошо, и один, который необходимо улучшить.

ПРИМЕР 8.3. ДВЕ ЗВЕЗДЫ И ПОЖЕЛАНИЕ

Когда ученикам предоставляют информацию, которая позволяет им составить четкое представление о том, что они изучают, и когда им с небольшими интервалами предлагают поразмышлять над своими результатами, у них формируется ответственность за свое обучение. Некоторые называют это приглашением в круг посвященных — предоставлением ученикам мощного знания (которым обычно обладают только учителя), которое позволяет им нести ответственность за свое обучение и добиваться успеха.


3. Время для размышлений

Один из эффективных способов повышения осведомленности учеников об изучаемых концепциях состоит в том, чтобы предоставить им время для размышлений во время занятий. В конце урока предложите им поразмышлять, воспользовавшись такими вопросами, как в примере 8.4.

ПРИМЕР 8.4. РАЗМЫШЛЕНИЯ

Интересная концепция

Над какой интересной концепцией мы работали сегодня?

Что я узнал сегодня?

Какие хорошие идеи появились у меня сегодня?

В каких ситуациях я мог бы использовать полученные сегодня знания?

Какие вопросы у меня есть по поводу сегодняшней работы?

Какие новые идеи появились у меня под влиянием этого урока?

4. Светофор

Этот вид работы в классе стимулирует учеников к размышлениям и дает учителям важную информацию. Есть много разных ее вариантов, но все они подразумевают, что ученики должны использовать красный, желтый и зеленый цвета, чтобы обозначить, понимают ли они тот или иной материал полностью, частично или им необходимо больше поработать над ним. Некоторые учителя раздают цветные бумажные стаканчики: их ученики ставят на парты во время урока. Ученики, которым необходимо, чтобы учитель остановился возле них и просмотрел их работу, ставят на стол красный стаканчик; те, кто считает, что урок проходит слишком быстро, используют желтый. Учителя могут предложить и другие варианты. Сперва некоторые ученики неохотно выставляли стаканчики, но когда поняли, какую пользу это им приносит, начали охотно использовать их. Некоторые учителя предлагают ученикам, на столах которых стоят зеленые стаканчики, объяснить изучаемую концепцию остальным. Это приносит огромную пользу как ученикам, так и учителям: учителя получают обратную связь о своем преподавании в реальном времени, а не в конце модуля или фрагмента работы, когда уже слишком поздно что-то предпринимать. Вместо бумажных стаканчиков можно использовать ламинированные кусочки цветной бумаги, пробив в них отверстия, чтобы их можно было повесить на кольцо.


5. Мозаичные группы

В мозаичных группах ученики работают вместе, чтобы стать экспертами по определенному явлению, новому методу или интересному материалу. Затем группы делятся на части и формируются новые группы, чтобы участники каждой были экспертами в определенной области. После этого члены группы могут обучить друг друга тому, что узнали сами, работая в качестве экспертов. Здесь необходимы минимум четыре области экспертных знаний, чтобы, когда члены группы перейдут в другие группы, все они могли научить друг друга чему-то новому. Класс из 32 учеников, разделенных на восемь групп, может работать так, как показано на рис. 8.3.


Рис. 8.3. Мозаичные группы


В главе 6 я предложила мозаичное занятие, в ходе которого ученики стали экспертами по вдохновляющим примерам, призванным искоренить стереотипы о том, кто может добиться больших успехов в математике.

Еще одно мозаичное занятие стимулирует учеников к осмыслению существующих в алгебре связей между графиками, таблицами значений, членами уравнения и закономерностями. Учитель раздает ученикам листы с четырьмя закономерностями, такие как в примерах 8.5–8.8, и предлагает группам учеников сделать плакат, иллюстрирующий, как они представляют себе рост фигур, и показывающий таблицу значений, график уравнения, а также закономерность, обобщенную и смоделированную с помощью уравнения. Каждый член группы становится экспертом по нескольким формам представления закономерности. Затем учитель вызывает по одному участнику из каждой группы. Все делятся знаниями о своей задаче с другими членами группы.

ПРИМЕР 8.5. МОЗАИЧНАЯ ЗАДАЧА А ПО АЛГЕБРЕ
ПРИМЕР 8.6. МОЗАИЧНАЯ ЗАДАЧА Б ПО АЛГЕБРЕ
ПРИМЕР 8.7. МОЗАИЧНАЯ ЗАДАЧА В ПО АЛГЕБРЕ
ПРИМЕР 8.8. МОЗАИЧНАЯ ЗАДАЧА Г ПО АЛГЕБРЕ

Затем группы обсуждают сходства и различия между разными формами представления своих алгебраических закономерностей.

Когда ученики становятся экспертами и несут ответственность за обучение других, это стимулирует их взять на себя ответственность за новые знания, которые они получают.


6. Билет на выход

Билет на выход — лист бумаги, который вы выдаете ученикам в конце урока и в котором предлагаете рассказать о своем обучении (пример 8.9). Прежде чем уйти из класса, ученики заполняют эти листы и сдают их. Они могут поразмышлять, что способствует их обучению и дает учителям ценную информацию об обучении и идеи для следующего урока.

ПРИМЕР 8.9. БИЛЕТ НА ВЫХОД

Билет на выход _____ Имя _____ Дата _____

Талон на выход _____ Имя _____ Дата _____


7. Онлайн-формы

Я видела, как учителя используют эффективную стратегию, состоящую в том, чтобы предложить ученикам заполнить онлайн-форму в режиме реального времени за время урока и отправить ее на адрес учителя. Можно попросить учеников поделиться комментариями или мыслями по поводу урока. Ученики, которые обычно не принимают активного участия в устном обсуждении, более охотно поделятся своими мыслями в онлайн-режиме. Существует много разных способов использования этой стратегии; в частности, можно попросить учеников прислать свои размышления, предложить проголосовать по какому-то вопросу или показать учителю красный, желтый или зеленый индикатор, который не увидят другие ученики.