Чтобы понять суть математики, следует рассмотреть ее закономерности в реальном мире. Закономерности в океане и дикой природе, архитектуре и осадках, поведении животных и социальных сетях вызывают у математиков восхищение. Последовательность Фибоначчи, пожалуй, самая известная из них. Фибоначчи — итальянский математик, опубликовавший в 1202 году в Италии работу о закономерности, названной в его честь. Сейчас известно, что она появилась несколькими столетиями ранее, еще в 200 году до н. э., в Индии. Вот как выглядит последовательность Фибоначчи:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55…
Первые два числа — 1 и 1, а каждое следующее представляет собой сумму двух предыдущих.
Попробуйте приглядеться к снежинкам. Каждая из них уникальна, но их объединяет одна закономерность. Все снежинки имеют шестиугольную структуру, поэтому у них всегда шесть концов (рис. 3.2 и 3.3).
Рис. 3.2. Математика в снежинках
Рис. 3.3. Молекулы воды
Во время онлайн-курса для учеников, изучающих математику, в котором поучаствовало более 100 тысяч слушателей, я показала, как математику используют животные. Аудитория заинтересовалась этим. Например, дельфины находят друг друга в воде с помощью звуков (рис. 3.4).
Рис. 3.4. Общение между дельфинами
Дельфин издает характерные щелкающие звуки, которые отражаются от различных объектов и возвращаются к нему. Затем по времени прохождения и характеристикам звукового сигнала животное определяет, где находятся его друзья. Он интуитивно вычисляет скорость, то есть находит ответ на тот самый вопрос о скорости, который задают ученикам на уроках алгебры (во многих случаях он никак не связан с реальной жизнью). Во время онлайн-курса я в шутку сказала слушателям, что, если бы дельфины могли разговаривать на человеческом языке, они стали бы учителями алгебры!
Во время исследований для онлайн-курса моя студентка Микаэла обнаружила, что пауки — настоящие эксперты по спиралям. Когда паук создает паутину, он сначала плетет фигуру в форме звезды между двумя прочными вертикальными опорами, например ветвями дерева. Затем паук закручивает спираль. Ему нужно построить ее как можно быстрее, чтобы закрепить звезду, поэтому он выбирает логарифмическую спираль. В ней расстояние между следующими друг за другом витками вокруг центра увеличивается в одинаковое количество раз (рис. 3.5).
Рис. 3.5. Паутина
Получается, чем больше спираль, тем быстрее она расширяется. Но при этом в паутине образуются большие промежутки, поэтому паук начинает строить еще одну, более плотную спираль, одновременно отцепляя первую. Новая спираль — арифметическая, в ней расстояние между витками постоянно. Плетение второй спирали занимает гораздо больше времени, поскольку приходится делать больше кругов вокруг центра звезды. Но это помогает пауку поймать больше насекомых, поскольку в сети не остается крупных промежутков. Такую поразительную инженерную конструкцию можно было бы построить с помощью вычислений, но паук интуитивно использует математику при разработке и применении своего алгоритма. Другие примеры использования математики животными можно найти в работах Кита Девлина (Devlin, 2006).
Когда я демонстрировала все эти идеи слушателям своего онлайн-курса, некоторые из них не соглашались со мной, заявляя, что математика в природе и мире животных — это не математика. Эти люди признавали только область чисел и вычислений. Я хотела подтолкнуть слушателей к более широкому восприятию предмета. И достигла своей цели. К концу курса среди слушателей был проведен опрос, в ходе которого 70% респондентов сказали, что изменили свои представления о том, что такое математика. При этом 75% слушателей убедили себя, что они могут добиться успеха в математике.
Математика есть повсюду в природе и искусстве, и все же большинство школьников даже не слышали о золотом сечении и не воспринимают математику как науку о закономерностях. Если мы не откроем ученикам эту дисциплину во всем ее многообразии, то лишим их возможности ощутить волшебство математики.
Не я одна считаю, что школьная математика не имеет ничего общего с математикой истинной. В 1999 году Рубен Херш написал замечательную книгу под названием «Что же такое математика?» (Hersh, 1999). Он утверждает, что математику представляют на уроках в искаженном виде. Большинство учеников воспринимают ее как совокупность ответов на вопросы, которых никто не ставит. Но Херш отмечает следующее.
Речь о вопросах, которые стимулируют развитие математики. Решение задач и постановка новых — основа этой науки. Если математику представить в отрыве от жизни, она действительно покажется мертвой.
Научные исследования (Silver, 1994) показали: когда ученикам дают возможность сформулировать математическую задачу, проанализировать ситуацию и придумать вопрос к ней (в этом и состоит суть истинной математики), это повышает их вовлеченность и успеваемость. Но это редкость. Помните, в известном фильме 2001 года «Игры разума» Джон Нэш (которого играет Рассел Кроу) изо всех сил пытается найти интересный вопрос? Это и есть крайне важный первый этап математической работы. На школьных уроках математики у учеников нет возможности выполнить это важное действие; они тратят время на вопросы, которые кажутся им не имеющими отношения к жизни и которых они не ставили.
В своей книге «При чем тут математика?» я описываю подход к организации урока математики, основанный на постановке вопросов (Boaler, 2015a). Преподаватель Ник Фиори создавал для учеников математические ситуации с участием таких предметов, как сосновые шишки, игральные карты, цветные бусины, кости, различные детали, и предлагал сформулировать свои вопросы. Поначалу ученикам было трудно выполнять это задание, но постепенно они заинтересовались и научились использовать свои идеи, проводить математические изыскания и осваивать новые методы.
Много лет школьная дисциплина теряла связь с наукой, которую используют ученые, и с математической жизнью. Ученики тратили тысячи часов на изучение процедур и правил, которые им никогда не пригодятся. Конрад Вольфрам — директор Wolfram-Alpha, одной из важнейших математических компаний во всем мире — резко критикует традиционный подход к преподаванию математики и категорически заявляет, что суть ее не сводится к вычислениям. В своем выступлении на конференции TED[10], которое посмотрели более миллиона людей, Вольфрам предложил, чтобы занятия математикой состояли из четырех этапов.
1. Постановка вопроса.
2. Переход от реального мира к математической модели.
3. Выполнение вычислений.
4. Возврат от модели к реальному миру, чтобы определить, получен ли ответ на исходный вопрос.
Первый этап подразумевает постановку продуманного вопроса по поводу определенных данных или ситуации. Это первое математическое действие, которое необходимо выполнить на рабочем месте. В США самая востребованная профессия — аналитик, или специалист по обработке больших данных, имеющихся в распоряжении каждой компании, и постановке важных вопросов по поводу этих данных. Второй этап, о котором говорит Вольфрам, — создание модели, позволяющей найти ответ на поставленный вопрос; третий — вычисления, а четвертый — возврат от модели к реальному миру, чтобы определить, точен ли ответ. Вольфрам отмечает, что 80% времени на уроках математики в школе тратится на третий этап (вычисления вручную). При этом способность работников делать вычисления не нужна работодателям: это могут делать калькуляторы или компьютеры. Вольфрам предлагает, чтобы вместо третьего этапа школьники уделяли больше времени этапам 1, 2 и 4.
Вольфрам утверждает, что в наше время работодателям необходимы люди, которые умеют задавать верные вопросы, разрабатывать модели, анализировать результаты и интерпретировать ответы, а не быстро выполнять вычисления, как раньше.
В список Fortune 500 входят 500 крупнейших компаний США. Когда в 1970 году руководителей этих компаний спросили, какие качества новых сотрудников представляют для них самую большую ценность, ответы выглядели так (табл. 3.1).
Таблица 3.1. Самые ценные качества сотрудников компаний из списка Fortune 500, по состоянию на 1970 год
Навыки вычислений занимали второе место в списке. В 1999 году список выглядел так, как показано в таблице 3.2.
Таблица 3.2. Самые ценные качества сотрудников компаний из списка Fortune 500, по состоянию на 1999 год
Навыки вычислений опустились на предпоследнее место в списке, а первые места заняли умение работать в команде и навыки решения задач.
Часто родители не видят нужды в строгости, которая составляет суть математики. Многие спрашивали меня: зачем ребенку объяснять свою работу, если он может получить верное решение? Мой ответ неизменен: объяснение называется в математике рассуждением, а рассуждение — обязательное условие математической строгости. Специалисты по естественным наукам доказывают или опровергают теории путем поиска реальных ситуаций, в которых эти теории работают или не работают. Математики доказывают теории в рамках обоснования. Им необходимо привести аргументы, которые убедят других, тщательно выстраивая цепочку рассуждений от одной идеи к другой с помощью логических связей. Математика — сугубо социальная наука, поскольку доказательство возникает только тогда, когда математики могут убедить коллег в наличии логических связей.
Многие работы по математике — плод совместного труда. Леоне Бертон изучала работу математиков и пришла к выводу, что более половины их публикаций подготовлены в соавторстве (Burton, 1999). Но на многих уроках математики ученики в полной тишине заполняют листы с заданиями. В то время как очень важно обсуждать задачи в группах или всем классом. Это самый эффективный инструмент осмысления материала (ученики редко усваивают идеи, не обсудив их); оно делает предмет интереснее и вовлекает детей в процесс обучения. Кроме того, во время обсуждения школьники учатся рассуждать логиче