Галерея числовых диковинок
Арифметическая кунсткамера
В мире чисел, как и в мире живых существ, встречаются подлинные диковинки, редкие экземпляры, обладающие исключительными свойствами. Из таких необыкновенных чисел можно было бы составить своего рода музей числовых редкостей, настоящую «арифметическую кунсткамеру». В ее витринах нашли бы себе место не только числовые исполины, о которых мы побеседуем еще в особой главе, но и числа сравнительно небольшие, зато выделяющиеся из ряда других какими-либо необычайными свойствами. Некоторые из них уже по внешности привлекают к себе внимание; другие открывают свои диковинные особенности лишь при более близком знакомстве.
Приглашаю читателя пройтись со мною по галерее таких числовых диковинок и познакомиться с некоторыми из них.
Пройдем, не останавливаясь, мимо первых витрин, заключающих числа, свойства которых нам уже знакомы. Мы знаем уже, почему попало в галерею диковинок число 2: не потому, что оно первое четное число, а потому, что оно - основание самой удобной системы счисления (см. стр. 191).
Не удивимся мы, встретив тут 5 - одно из наших любимейших чисел, играющее важную роль при всяких «округлениях», в том числе и при округлении цен, которое обходится нам так дорого (см. стр. 154). Не будет неожиданностью для нас найти здесь и число 9, - конечно, не как «символ постоянства»[64], а как число, облегчающее нам поверку всех арифметических действий (см. стр. 174). Но вот витрина, за стеклом которой мы видим -
Число 12
Чем оно замечательно? Конечно, это число месяцев в году и число единиц в дюжине. Но что, в сущности, особенного в дюжине? Немногим известно, что 12 - старинный и едва не победивший соперник числа 10 в борьбе за почетный пост основания системы счисления. Культурнейший народ древнего Востока - вавилоняне и их предшественники, еще более древние жители Двуречья - вели счет в 12-ричной системе счисления. И если бы не пересилившее влияние Индии, подарившей нам 10-тичную систему, мы, весьма вероятно, унаследовали бы от Вавилона 12-ричную систему. Кое в чем мы и до сих пор платим дань этой системе, несмотря на победу 10-тичной. Наше пристрастие к дюжинам и гроссам, наше деление суток на две дюжины часов, деление часа - на 5 дюжин минут, деление минуты - на столько же секунд, деление круга на 30 дюжин градусов, наконец, деление фута на 12 дюймов - разве не свидетельствует все это о том, как велико еще влияние этой древней системы?
Хорошо ли, что в борьбе между дюжиной и десяткой победила последняя? Конечно, сильными союзницами десятки были и остаются наши собственные руки с десятью пальцами, - живые счетные машины. Но если бы не это, то следовало бы безусловно отдать предпочтение 12-ти перед 10. Гораздо удобнее производить расчеты по 12-ричной системе, нежели по 10-тичной. Причина та, что число 10 делится без остатка только на 2 и на 5, между тем как 12 делится и на 2, и на 3, и на 4, и на 6. У 10 всего два делителя, у 12 - четыре. Преимущества 12-ричной системы станут вам яснее, если вы примете в соображение, что в 12-ричной системе число, оканчивающееся нулем, кратно и 2, и 3, и 4, и 6; подумайте, как удобно дробить число, когда и 1/2, и 1/3, и 1 1/4 и 1/6 его должны быть целыми числами! А если выраженное в 12-ричной системе число оканчивается двумя нулями, то оно должно делиться без остатка на 144, а следовательно, и на все множители 144-х, т. е. на следующий длинный ряд чисел:
2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144.
Четырнадцать делителей - вместо тех восьми, которые имеют числа, написанные в 10-тичной системе, если оканчиваются двумя нулями (2, 4, 5, 10, 20, 25, 50 и 100). В нашей системе только дроби вида 1/2, 1/4, 1/5, 1/20 и т. д. превращаются в конечные десятичные; в 12-ричной же системе можно написать без знаменателя гораздо более разнообразные дроби, и прежде всего дроби:
1/2, 1/3, 1/4, 1/6, 1/8, 1/9, 1/12, 1/16, 1/18, 1/24, 1/36, 1/48, 1/72, 1/144,
которые соответственно изобразятся так:
0,6; 0,4; 0,3; 0,2; 0,16; 0,14; 0,1; 0,09; 0,08; 0,06; 0,04; 0,03; 0,02; 0,01.
Было бы, однако, большим заблуждением думать, что делимость числа может зависеть от того, в какой системе счисления оно изображено. Если орехи, заключающиеся в данном мешке, могут быть разложены в 5 одинаковых кучек, то это свойство их, конечно, не изменится оттого, будет, ли наше число орехов выражено в той или иной системе счисления, или отложено на счетах, или написано прописью, или, наконец, изображено каким-либо иным способом. Если число, написанное в 12-ричной системе, делится на 6 или на 72, то, будучи выражено в другой системе счисления, например в 10-тичной, оно должно иметь тех же делителей. Разница лишь в том, что в 12-ричной системе делимость на 6 или на 72 легче обнаружить (число оканчивается одним или двумя нулями). Когда говорят о преимуществах 12-тиричной системы в смысле делимости на большое число делителей, то имеют в виду, что благодаря склонности нашей «к круглым» числам на практике будут чаще встречаться числа, оканчивающиеся, в 12-ричной системе, нулями.
При таких преимуществах 12-ричной системы неудивительно, что среди математиков раздавались голоса за полный переход на эту систему. Однако мы уже чересчур тесно сжились с 10-тичной системой, чтобы решаться на такую реформу.
Вы видите, следовательно, что дюжина имеет за собою длинную историю и что число 12 не без основания очутилось в галлерее числовых диковинок. Зато его соседка - «чертова дюжина», 13, фигурирует здесь не потому, что чем-либо замечательна, а скорее именно потому, что ничем не замечательна, хотя и пользуется такой мрачной славой: разве не удивительно в самом деле, что ровно ничем не выделяющееся число могло стать столь «страшным» для суеверных людей?[65]
В следующей витрине арифметической кунсткамеры перед нами
Число 365
Оно замечательно прежде всего тем, что определяет число дней в году. Далее, при делении на 7 оно дает в остатке 1: эта несущественная, казалось бы, особенность числа 365 имеет большое значение для календаря. От нее зависит то, что каждый простой (не високосный) год кончается тем днем недели, каким он начался; если, например, день нового года был понедельник, то и последний день года будет понедельник, а следующий год начнется со вторника. По той же причине - благодаря остатку 1 от деления 365 на 7 - было бы нетрудно так изменить наш календарь, чтобы определенная календарная дата всегда приходилась на один и тот же день недели, - например, чтобы 1-го мая каждый год было воскресенье. Для этого достаточно было бы лишь первый день года вовсе не вводить в счет числа дней, называя его не «1 января», а просто «день нового года»; 1-м января будет следующий день. Тогда остальное число дней года, 364, будет заключать целое число недель; следовательно, весь ряд дальнейших лет будет начинаться тем же днем недели, и все даты из года в год будут повторяться в одни и те же дни. В годы високосные, заключающие 366 дней, надо будет уже первые два дня года оставить вне счета, «новогодние».
Любопытна и другая особенность числа 365, не связанная с календарем:
365 = 10 x 10 + 11 x 11 + 12 x 12,
то есть 365 равно сумме квадратов трех последовательных чисел, начиная с 10-ти:
102 + 112 + 122 = 100 + 121 + 144 = 365.
Но и это еще не все: тому же равна сумма квадратов двух следующих чисел - 13 и 14:
132 + 142 = 169 + 196 = 365.
Таких чисел не много наберется в нашей галлерее арифметических диковинок.
Три девятки
В следующей витрине выставлено наибольшее из всех трехзначных чисел: 999. Оно, без сомнения, гораздо удивительнее, чем его перевернутое изображение - 666, знаменитое «звериное число» Апокалипсиса, вселявшее нелепый страх многим суеверным людям, но по арифметическим свойствам ничем не выделяющееся среди прочих чисел. Любопытная особенность числа 999 проявляется при умножении на него всякого другого трехзначного числа. Тогда получается шестизначное произведение; первые три цифры его есть умножаемое число, только уменьшенное на 1-цу, а остальные три цифры (кроме последней) - «дополнения» первых до 9. Например:
Стуит лишь взглянуть на следующую строку, чтобы понять происхождение этой особенности:
Зная эту особенность, мы можем «мгновенно» умножать любое трехзначное число на 999.
947 x 999 = 946053;
509 x 999 = 508491;
981 x 999 = 980019; и т. п.
А так как 999 = 9 x 111 = 3x3x3x37, то вы можете, опять-таки с молниеносной быстротой, писать целые колонны шестизначных чисел, кратных 37; незнакомый со свойствами числа 999, конечно, сделать этого не в состоянии. Короче говоря, вы можете устраивать перед непосвященными маленькие сеансы «мгновенного умножения и деления» не хуже иного фокусника.
Число шехеразады
Следующее на очереди у нас число 1001, - прославленное число Шехеразады. Вы, вероятно, и не подозревали, что в самом названии сборника волшебных арабских сказок заключается также своего рода чудо, которое могло бы поразить воображение сказочного султана не менее многих других чудес Востока, если бы он способен был интересоваться арифметическими диковинками.
Чем же так замечательно число 1001? С виду оно кажется весьма обыкновенным. Оно даже не принадлежит к избранному разряду так называемых «простых» чисел. Через ячейки Эратосфенова решета оно свободно проскользнуло бы, так как делится без остатка и на 7, и на 11, и на 13 - на три последовательных простых числа, произведением которых оно и является. Но в том, что число 1001 = 7x11x13, нет еще ничего волшебного. Замечательнее то, что при умножении на него трехзначного числа получается результат, состоящий из самого умноженного числа, только написанного дважды, например:
873 x 1001 = 873873;
207 x 1001 = 207207; и т. д.
И хотя этого и следовало ожидать, так как 873 x 1001 = 873 x 1000 + 873 = 873000 + 873, - все же, пользуясь указанным свойством «числа Шехеразады», можно достичь результатов совсем неожиданных, - по крайней мере, для человека неподготовленного.
Целое общество гостей, непосвященных в арифметические тайны, вы можете поразить следующим фокусом. Пусть кто-нибудь напишет на бумажке, секретно от вас, трехзначное число, какое хочет, и затем пусть припишет к нему еще раз то же самое число. Получится шестизначное число, составленное из трех повторяющихся цифр. Предложите тому же товарищу, или его соседу, разделить - секретно от вас - это число на 7; при этом вы заранее предсказываете, что остатка не получится. Результат деления передается соседу, который, по вашему предложению, делит его на 11; и хотя вы не знаете делимого, вы все же смело утверждаете, что и оно разделится без остатка. Полученный результат вы направляете следующему соседу, которого просите разделить это число на 13 - деление снова выполняется без остатка, о чем вы заранее предупреждаете. Результат третьего деления вы, не глядя на полученное число, вручаете первому товарищу со словами:
- Вот число, которое вы задумали!
Так и есть: вы угадали.
Какова разгадка этого фокуса?
Этот красивый арифметический фокус, производящий на непосвященных впечатление волшебства, объясняется очень просто: вспомните, что приписать к трехзначному числу его само - значит умножить его на 1001, т. е. на произведение 7x11x13. Шестизначное число, которое ваш товарищ получит после того, как припишет к задуманному числу его само, должно будет поэтому делиться без остатка и на 7, и на 11, и на 13; а в результате деления последовательно на эти три числа (т. е. на их произведение - 1001) оно должно, конечно, снова дать задуманное число.
Число 10101
После сказанного о числе 1001 для вас уже не будет неожиданностью увидеть в витринах нашей галлереи число 10101. Вы догадаетесь, какому именно свойству обязано число это такою честью. Оно, как и число 1001, дает удивительный результат при умножении, - но не трехзначных чисел, а двузначных; каждое двузначное число, умноженное на 10101, дает в результате само себя, написанное трижды. Например:
73 x 10101 = 737373;
21 x 10101 = 212121.
Причина уясняется из следующей строки:
Можно ли проделывать с помощью этого числа фокусы необычайного отгадывания, как с помощью числа 1001?
Да, можно. Здесь даже возможно обставить фокус эффектнее, разнообразнее, если иметь в виду, что 10101 есть произведение четырех простых чисел:
10101 = 3x7x13x37.
Предложив первому гостю задумать какое-нибудь двузначное число, вы предлагаете второму приписать к нему то же число, а третьему приписать то же число еще раз. Четвертого гостя вы просите разделить получившееся шестизначное число, например, на 7; пятый гость должен разделить полученное частное на 3; шестой гость делит то, что получилось, на 37 и, наконец, седьмой делит этот результат на 13, - при чем все 4 деления выполняются без остатка. Результат последнего деления вы просите передать первому гостю: это и есть задуманное им число.
При повторении фокуса вы можете внести в него некоторое разнообразие, обращаясь каждый раз к новым делителям. А именно, вместо четырех множителей 3x7x13x37 можете взять следующие группы трех множителей: 21x13x37; 7x39x37; 3x91x37; 7x13x111.
Число это - 10101 - пожалуй, даже удивительнее волшебного числа Шехеразады, хотя и менее его известно своими поразительными свойствами. А между тем о нем писалось еще двести лет тому назад в «Арифметике» Магницкого, в той главе, где приводятся примеры умножения «с некоим удивлением». Тем с большим основанием должны мы включить его в наше собрание арифметических диковинок.
Число 10001
С этим числом вы также можете проделать фокусы вроде предыдущих, хотя, пожалуй, и не столь эффектные.
Дело в том, что оно представляет собою произведение только двух простых чисел:
10001 = 73 x 137.
Как воспользоваться этим для выполнения арифметических фокусов, читатель, надеюсь, после всего сказанного выше догадывается сам.
Шесть единиц
В соседней витрине мы видим такую диковинку арифметической кунсткамеры:
- число, состоящее из шести единиц. Благодаря знакомству с волшебными свойствами числа 1001, мы сразу соображаем, что
111111 = 111 x 1001.
Но 111 = 3x37, а 1001 = 7x11x13. Отсюда следует, что наш новый числовой феномен, состоящий из одних лишь единиц, представляет собою произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число 111111:
3 x (7 x 11 x 13 x 37) = 3 x 37037 = 111111
7 x (3 x 11 x 13 x 37) = 7 x 15873 = 111111
11 x (3 x 7 x 13 x 37) = 11 x 10101 = 111111
13 x (3 x 7 x 11 x 37) = 13 x 8547 = 111111
37 x (3 x 7 x 11 x 13) = 37 x 3003 = 111111
(3 x 7) x (11 x 13 x 37) = 21 x 5291 = 111111
(3 x 11) x (7 x 13 x 37) = 33 x 3367 = 111111 и т. д.
Вы можете, значит, засадить общество из 15 человек за работу умножения, и хотя каждый будет перемножать другую пару чисел, все получат один и тот же оригинальный результат: 111111.
То же число 111111 пригодно и для отгадывания задуманных чисел наподобие того, как выполняется это с помощью чисел 1001 и 10101. В данном случае нужно предлагать задумывать число однозначное, т. е. одну цифру, и повторять ее 6раз. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. д. Это дает возможность до крайности разнообразить выполнение фокуса. Как надо поступать в этих случаях, - предоставляю придумать читателю.
Числовые пирамиды
В следующих витринах галлереи нас поражают числовые достопримечательности совсем особого рода - некоторое подобие пирамид, составленных из чисел. Рассмотрим поближе первую из таких «пирамид».
Как объяснить эти своеобразные результаты умножения, эту странную закономерность?
Возьмем для примера какой-нибудь из средних рядов нашей числовой пирамиды: 123456 x 9 + 7. Вместо умножения на 9 можно умножить на (10 - 1), т. е. приписать 0 и вычесть умножаемое:
Достаточно взглянуть на последнее вычитание, чтобы понять, почему тут получается результат, состоящий только из одних единиц.
Мы можем понять это, исходя и из других рассуждений. Чтобы число вида 12345… превратилось в число вида 11111…, нужно из второй его цифры вычесть 1, из третьей - 2, из четвертой - 3, из пятой - 4 и т. д.; иначе говоря, вычесть из него то же число вида 12345…, лишенное своей последней цифры, - т. е. вдесятеро уменьшенное и предварительно сокращенное на последнюю цифру. Теперь понятно, что для получения искомого результата нужно наше число умножить на 10, прибавить к нему следующую за последней цифру и вычесть из результата первоначальное число (а умножить на 10 и отнять множимое - значит, умножить на 9).
Сходным образом объясняется образование и следующей числовой пирамиды, получающейся при умножении определенного ряда цифр на 8 и прибавлении последовательно возрастающих цифр. Особенно интересна в этой пирамиде последняя строка, где в результате умножения на 8 и прибавления 9 происходит превращение полного натурального ряда цифр в такой же ряд, но с обратным расположением.
Попытайтесь объяснить эту особенность.
Получение таких странных результатов уясняется из следующей строки:
* Почему 12345 x 9 + 6 дает именно 111111, было показано при рассмотрении предыдущей числовой пирамиды.
то есть 12345 x 8 + 5 = 111111 - 12346. Но вычитая из числа 111111 число 12346, составленное из ряда возрастающих цифр, мы, как легко понять, должны получить ряд убывающих цифр 98765.
Вот, наконец, третья числовая пирамида, также требующая объяснения:
Эта пирамида есть прямое следствие первых двух. Связь устанавливается очень легко. Из первой пирамиды мы знаем уже, что, например:
12345 x 9 + 6 = 111111.
Умножив обе части на 8, имеем:
(12345 x 8 x 9) + (6 x 8) = 888888.
Но из второй пирамиды мы знаем, что
12345 x 8 + 5 = 98765, или 12345 x 8 = 98760.
Значит:
888888 = (12345 x 8 x 9) + (6 x 8) = (98760 x 9) + 48 = (98760 x 9) + (5 x 9) + 3 = (98760 + 5) x 9 + 3 = 98765 x 9 + 3.
Вы убеждаетесь, что оригинальные числовые пирамиды не так уже загадочны, как кажутся с первого взгляда. Курьезно, что мне случилось как-то видеть их напечатанными в одной немецкой газете с припиской: «Причина такой поразительной закономерности никем еще до сих пор не была объяснена»…
Девять одинаковых цифр
Конечная строка первой из сейчас (стр. 215) рассмотренных «пирамид»:
12345678 x 9 + 9 = 111111111
представляет образчик целой группы интересных арифметических курьезов, собранных в нашем музее в следующую таблицу:
Откуда такая закономерность в результатах?
Примем во внимание, что
12345678 x 9 + 9 = (12345678 + 1) x 9 = 12345679 x 9.
Поэтому
12345679 x 9 = 111111111.
А отсюда прямо следует, что
12345679 x 9 x 2 = 222222222
12345679 x 9 x 3 = 333333333
12345679 x 9 x 4 = 444444444 и т. д.
Цифровая лестница
Что получится, если число 111111111, с которым мы сейчас имели дело, умножить само на себя? Заранее можно предвидеть, что результат должен быть диковинный, - но какой именно?
Если вы обладаете способностью отчетливо рисовать в воображении ряды цифр, вам удастся найти интересующий нас результат, даже не прибегая к выкладкам на бумаге. В сущности здесь дело сводится только к надлежащему расположению частных произведений, потому что умножать приходится все время лишь единицу на единицу - действие, могущее затруднить разве лишь Фонвизинского Митрофанушку, размышляющего о результате умножения «единожды один». Сложение же частных произведений сводится к простому счету единиц[66]. Вот результат этого единственного в своем роде умножения (при выполнении которого, впрочем, не приходится ни разу прибегать к действию умножения):
Все девять цифр выстроены в стройном порядке, симметрично убывая от середины в обе стороны.
Те из читателей, которых утомило обозрение числовых диковинок, могут покинуть здесь эту галерею и перейти в следующие отделения, где показываются фокусы и выставлены числовые великаны и карлики; я хочу сказать, - они могут прекратить чтение этой главы и обратиться к дальнейшим. Но кто желает познакомиться еще с несколькими интересными достопримечательностями мира чисел, тех приглашаю осмотреть со мною небольшой ряд ближайших витрин.
Магические кольца
Что за странные кольца выставлены в следующей витрине нашей галереи? Перед нами (см. рис. след. стр.) три плоских кольца, вращающихся одно в другом. На каждом кольце написаны шесть цифр в одном и том же порядке, иначе говоря - написано одно и то же число: 142857. Эти кольца обладают следующим удивительным свойством: как бы ни были они повернуты, мы при сложении двух написанных на них чисел - считая от любой цифры в направлении начерченной стрелки - во всех случаях получим то же самое шестизначное число (если только результат вообще будет 6-ти значный), лишь немного подвинутое! В том положении, например, какое изображено на прилагаемом чертеже, мы получаем при сложении двух наружных колец:
т. е. опять-таки тот же ряд цифр: 142857, только цифры 5 и 7 перенеслись из конца в начало.
При другом расположении колец относительно друг друга мы имеем такие случаи:
Исключение составляет единственный случай, когда в результате получается 999999.
Мало того. Тот же ряд цифр в той же последовательности мы получим и при вычитании чисел, написанных на кольцах. Например:
Исключение составляет случай, когда приведены к совпадению одинаковые цифры - тогда, разумеется, разность равна нулю.
Но и это еще не все. Умножьте число 142857 на 2, на 3, на 4, на 5 или на 6 - и вы получите снова то же число, лишь передвинутое, в круговом порядке, на одну или несколько цифр:
Чем же обусловлены все загадочные особенности этого числа?
Мы нападаем на путь к разгадке, если продлим немного последнюю табличку и попробуем умножить наше число на 7: в результате получится 999999. Значит, число наше - не что иное, как седьмая часть 999999, а, следовательно, дробь И действительно, если вы станете превращать 1/7 в десятичную дробь, вы получите:
Наше загадочное число есть период бесконечной периодической дроби, которая получается при превращении 1/7 в десятичную. Становится понятным теперь, почему при удвоении, утроении и т. д. этого числа происходит лишь перестановка одной группы цифр на другое место. Ведь умножение этого числа на 2 делает его равным 2/7 и, следовательно, равносильно превращению в десятичную дробь уже не 1/7, а 2/7. Начав же превращать дробь 2/7 в десятичную, вы сразу заметите, что цифра 2 - один из тех остатков, которые у нас получались уже при превращении 1/7; ясно, что должен повториться и прежний ряд цифр частного, но он начнется с другой цифры; иными словами, должен получиться тот же период, но только несколько начальных цифр его очутятся на конце. То же самое произойдет и при умножении на 3, на 4, на 5 и на 6, т. е. на все числа, получающиеся в остатках. При умножении же на 7 мы должны получить целую 1-цу, или, - что то же самое - 0,9999…
Любопытные результаты сложения и вычитания чисел на кольцах находят себе объяснение в том же факте, что 142857 есть период дроби, равной 1/7. В самом деле: что мы делаем, поворачивая кольцо на несколько цифр? Переставляем группу цифр спереди на конец, т. е., согласно только что сказанному, мы умножаем число 142857 на 2, на 3, на 4 и т. д. Следовательно, все действия сложения или вычитания чисел, написанных на кольцах, сводятся к сложению или вычитанию дробей 1/7, 2/7, 3/7 и т. д. В результате мы должны получить, конечно, несколько седьмых долей, - т. е. опять-таки наш ряд цифр 142857 в той или иной круговой перестановке. Отсюда надо исключить лишь случаи, когда складываются такие числа седьмых долей, которые в сумме дают 1 или больше 1.
Но и последние случаи исключаются не вполне: они дают результат, правда, не тождественный с рассмотренными, но все же сходный с ними. Рассмотрим внимательнее, что должно получиться от умножения нашего загадочного числа на множитель больше 7, т. е. на 8, на 9 и т. д. Умножить 142857, например, на 8, мы можем так: умножить сначала на 7 и к произведению (т. е. к 999999) прибавить наше число:
142857 x 8 = 142857 x 7 + 142857 = 999999 + 142857 = 1.000.000-1 + 142857 = 1.000.000 + (142857-1).
Окончательный результат - 1142856 - отличается от умножаемого 142857 только тем, что впереди стоит еще одна 1-ца, а последняя цифра на 1-цу же уменьшена. По сходному правилу составляются произведения 142857 на всякое другое число, больше 7, - как легко усмотреть из следующих строк:
142857 x 8 = (142857 x 7) + 142857 = 1142856
142857 x 9 = (142857 x 7) + (142857 x 2) = 1285713
142857 x 10 = (142857 x 7) + (142857 x 3) = 1428570
142857 x 16 = (143857 x 7 x 2) + (142857 x 2) = 2285712
142857 x 39 = (142857 x 7 x 5) + (142857 x 4) = 5571423.
Общее правило здесь такое: при умножении 142857 на любой множитель нужно умножить лишь на остаток от деления множителя на 7; впереди этого произведения ставится число, показывающее, сколько семерок в множителе, и то же число вычитается из результата[67]. Пусть мы желаем умножить 142857 на 86. Множитель 86при делении на 7 дает в частном 12 и в остатке 4. Следовательно, результат умножения таков:
12571428 - 12 = 12571416.
От умножения 142857 x 365 мы получим (так как 365 при делении на 7 дает в частном 52, а в остатке 1):
52142857 - 52 = 52142805.
Усвоив это простое правило и запомнив результаты умножения нашего диковинного числа на множители от 2 до 6 (что весьма нетрудно - нужно помнить лишь, с какой цифры они начинаются), вы можете изумлять непосвященных молниеносно-быстрым умножением шестизначного числа. А чтобы не забыть этого удивительного числа, запомним, что оно произошло от 1/7, или - что то же самое, - от 2/14; вот вам первые три цифры нашего числа: 142. Остальные три получаются вычитанием первых трех из 9-ти:
Мы уже имели дело с такими числами - именно, когда знакомились со свойствами числа 999. Вспомнив сказанное там, мы сразу сообразим, что число 142857 есть, очевидно, результат умножения 143 на 999:
142857 = 143 x 999.
Но 143 = 13 x 11. Припомнив замеченное раньше о числе 1001, равном 7 x 11 x 13, мы будем в состоянии, не выполняя действия, предсказать, что должно получиться от умножения 142857 x 7:
142857 x 7 = 143 x 999 x 7 = 999 x 11 x 13 x 7 = 999 x 1001 = 999999
(все эти преобразования мы, конечно, можем проделать в уме).
Феноменальная семья
Только что рассмотренное нами число 142857 является одним из членов целой семьи чисел, обладающих теми же свойствами. Вот еще одно такое число: 058823594117647 (0 впереди необходим). Если умножить это число, например, на 4, мы получим тот же ряд цифр, только первые 4 цифры будут переставлены в конец:
0588235294117647x4 = 2352941176470588.
Расположив цифры этого числа на ряде подвижных колец, как в предыдущем случае, - мы при сложении чисел двух колец будем получать то же число, лишь смещенное в круговом порядке:
При кольцевом расположении все три ряда, конечно, тождественны.
От вычитания чисел двух колец опять-таки получается тот же круг цифр:
Наконец, это число, как и рассмотренное ранее, состоит из двух половин: цифры второй половины являются дополнением цифр первой половины до 9.
Попробуйте найти разгадку всех этих особенностей.
Нетрудно догадаться, каким образом приведенный числовой ряд оказался столь близким родственником числа 142857; последнее число представляет собою период бесконечной дроби, равной 1/7, наше же число является, вероятно, периодом какой-нибудь другой дроби. Так и есть: наш длинный ряд цифр - не что иное, как период бесконечной дроби, получающейся от превращения в десятичную простой дроби 1/17:
1/17 = 0,(0588235294117647).
Вот почему при умножении этого числа на множители от 1 до 16 получается тот же ряд цифр, в котором лишь одна или несколько начальных цифр перенесены в конец числа. И наоборот - перенося одну или несколько цифр ряда из начала в конец, мы тем самым увеличиваем это число в несколько раз (от 1 до 16). Складывая два кольца, повернутых одно относительно другого, мы производим сложение двух умноженных чисел, например утроенного и удесятеренного - и, конечно, должны получить то же кольцо цифр, потому что умножение на 3 + 10, т. е. на 13, вызывает лишь перестановку группы цифр, незаметную при круговом расположении.
При некотором положении колец получаются, однако, суммы, немного отличающиеся от первоначального ряда. Если, например, повернем кольца так, чтобы складывать пришлось шестикратное число с пятнадцатикратным, то в сумме должно получиться число, умноженное на 6 + 15 = 21. А такое произведение, как легко догадаться, составляется уже несколько иначе, чем произведение на множитель, меньший 16. В самом деле: так как наше число есть период дроби равной 1/17, то, будучи умножено на 17, оно должно дать 16 девяток (т. е. столько, сколько их в подразумеваемом знаменателе периодической дроби), или 1 с 17 нулями минус 1. Поэтому при умножении на 21, т. е. на 4 + 17, мы должны получить четырехкратное число, впереди которого стоит 1, а от разряда единиц отнята 1. Четырехкратное же число начнется с цифр, получающихся при превращении в десятичную дробь простой дроби 4/17.
Порядок остальных цифр нам известен: 5294… Значит, 21-кратное наше число будет
2352941176470588.
Столько именно и получается от сложения кругов цифр при соответственном их расположении. При вычитании числовых колец такого случая, разумеется, быть не может.
Чисел, подобных тем двум, с которыми мы познакомились, существует множество. Все они составляют словно одно семейство, так как объединены общим происхождением - от превращения простых дробей в бесконечные десятичные. Но не всякий период десятичной дроби обладает рассмотренным выше любопытным свойством давать при умножении круговую перестановку цифр. Не вдаваясь в тонкости теории, отметим, что это имеет место только для тех дробей, число цифр периода которых на единицу меньше знаменателя соответствующей простой дроби. Так, например:
Вы можете убедиться испытанием, что периоды дробей, получающихся от превращения 1/19, 1/23 и 1/29 в десятичные, обладают теми же особенностями, как и рассмотренные нами периоды дробей 1/7 и 1/17.
Например, от 1/29 получаем число
0344827586206896 551724137931.
Если указанное сейчас условие (относительно числа цифр периода) не соблюдено, то соответствующий период дает число, не принадлежащее к занимающей нас семье интересных чисел. Например, 1 / 13 дает десятичную дробь с шестью (а не с 12) цифрами в периоде:
1 / 13 = 0,076923.
Помножив на 2, получаем совершенно иное число:
2 / 13 = 0,153846.
Почему? Потому что среди остатков от деления 1:13 не было числа 2. Различных остатков было столько, сколько цифр в периоде, т. е. 6; различных же множителей для дроби 1/13 у нас 12; следовательно, не все множители будут среди остатков, а только 6. Легко убедиться, что эти множители следующие: 1, 3, 4, 9, 10, 12. Умножение на эти 6 чисел дает круговую перестановку (076923 x 3 = 230769), на остальные - нет. Вот почему от 1/13 получается число, лишь отчасти пригодное для «магического кольца». То же надо сказать и о целом ряде других периодов.
После этого, думаем, нельзя не согласиться, что длиннейшие периоды бесконечных дробей представляют собою настоящую Калифорнию интереснейших арифметических достопримечательностей.