Математика для взрослых. Лайфхаки для повседневных вычислений — страница 11 из 19

Скорость

Всем нам порой приходится планировать свои передвижения. Возможно, вам интересно, сколько времени займет поездка на работу или, если вы добрались слишком быстро, не засекли ли ваш автомобиль дорожные радары…

Расчет скорости

К поездкам имеют отношение три фактора: расстояние, скорость и время в пути. Вот как они взаимосвязаны:

расстояние = скорость × время, или d = st

Здесь d обозначает расстояние (от англ. distance – расстояние), s – скорость (от англ. speed – скорость) и t – время (от англ. time – время).

То, что d = st, легко запомнить, поскольку буквы s, t стоят в алфавитном порядке. Из этого уравнения следуют два других.

Разделив обе части на t, получим: s = d/t

Или, разделив обе части на s, получим: t = d/s



А вот ситуация, в которой эти формулы очень пригодятся. Корабль отчаливает через 3 часа, а до причала, где он пришвартован, ехать 150 миль. С какой скоростью нужно двигаться, чтобы не опоздать?

Зная два параметра, всегда можно вычислить третий – так что давайте разбираться, с какой скоростью нужно вести машину. Нам известно, что d = 150 миль, а t = 3 часа, поэтому подставим эти величины в формулу s = d/t и получим s = 150/3 = 50 миль в час. Скорость измеряется в милях в час, потому что мы делили количество миль на количество часов.

При расчетах скорости вы должны убедиться, что все величины выражены в одних и тех же единицах измерения.

Правильные единицы измерения


У этой пары есть 10 минут, чтобы добраться до родильного дома, а велосипедист едет со скоростью 20 миль в час. Успеют ли эти бедолаги? Нам надо выяснить, за какое время можно преодолеть 3 мили, двигаясь со скоростью 20 миль в час. Используя формулу t = d/s, получим: t = d/s = 3/20.

Поскольку скорость выражена в милях в час, в результате выйдет 3/20 часа, однако нам нужно время в минутах. В часе 60 минут, стало быть, в минутах это будет 3/20 × 60 = 9 минут. Так что, когда парочка доберется до роддома, в запасе у них останется всего минута. Будем надеяться, что в приемной нет очереди.

Комбинирование разных скоростей

Допустим, вы должны преодолеть на машине 400 миль максимум за 8 часов. Если всю дорогу ехать с постоянной скоростью, формула s = d/t подскажет, что она должна равняться 400 ÷ 8 = 50 миль в час.

Теперь предположим, что вы проехали первые 200 миль со скоростью 40 миль в час. С какой скоростью нужно ехать оставшиеся 200 миль, чтобы уложиться в отведенные 8 часов? Может показаться, что подходящий ответ – 60 миль в час, но это неверно!

Сначала выясним, сколько еще осталось времени. Раз вы проехали 200 миль со скоростью 40 миль в час, воспользуемся формулой t = d/s, чтобы узнать, сколько вы уже находитесь в пути: 200 ÷ 40 = 5 часов. Значит, оставшиеся 200 миль нужно преодолеть за 3 часа, поэтому ехать надо со скоростью 200 ÷ 3 = 66,7 миль в час.

Проценты

С процентами мы сталкиваемся повсюду – от магазинов до банков, от платежных ведомостей до результатов экзаменов. Несложные проценты, такие как 50 %, 33 % или 25 %, часто используются для описания специальных предложений в торговых точках, однако если вы имеете дело с налогами или кредитной картой, вам знакомы куда более замысловатые процентные соотношения. Так или иначе, проценты стоят того, чтобы в них разобраться. Как обычно в математике, изначально все исключительно просто: один процент обозначается как 1 %, и это в точности соответствует 1/100, или 0,01. А сто процентов, или 100 %, – это то же самое, что 100/100, то есть 1.

От дробей к процентам

Чтобы преобразовать простую дробь в проценты, нужно разделить верхнюю часть дроби (числитель) на нижнюю часть (знаменатель) и умножить на 100. Вот как перевести в проценты дробь 2/5.



Также проценты можно преобразовать обратно в дробь, разделив их на 100. Переведем 40 % в простую дробь:



Проценты и десятичные дроби тесно взаимосвязаны, поскольку проценты – это первые две цифры после запятой в десятичной дроби: например 0,85 = 85 %. Когда после запятой стоит ноль, его важно учитывать! 0,03 = 03 %, или просто 3 %. Если же после запятой много чисел, следует передвинуть запятую на два знака. Допустим, вы хотите определить, сколько в процентах будет 1/16: вводим в калькулятор 1 ÷ 16 и получаем 0,0625, что соответствует 6,25 %.

Уклон дороги

Поднимаясь на велосипеде в гору, вы можете встретить дорожный знак, где обозначен уклон дороги в процентах – чем круче подъем, тем это значение больше. Вот как оно вычисляется:

Вертикальное расстояние, на которое вы поднимаетесь вверх, делится на горизонтальное расстояние, на которое вы продвигаетесь вперед. Например, на каждые 4 метра движения вперед вы поднимаетесь на 1 метр. В прежние времена сказали бы, что это уклон 1 к 4, а нынче записывают как дробь 1/4 и переводят в проценты. Следовательно, уклон 1 к 4 будет обозначен на дорожном знаке как 25 %. На первый взгляд это немного, однако если вы не в идеальной физической форме, придется слезть с велосипеда и катить его рядом.

Большинство простых дробей невозможно точно преобразовать в проценты (как и в десятичные дроби). Ниже приведены самые распространенные значения в процентах и соответствующие им дроби; звездочками помечены округленные значения.

50 % = 1/2

25 % = 1/4

75 % = 3/4

33 %* = 1/3

67 %* = 2/3

10 % = 1/10

20 % = 1/5

40 % = 2/5

60 % = 3/5

17 %* = 1/6

12,5 % = 1/8

Деньги и проценты

Большинство денежных единиц четко соотносятся с десятичными дробями и процентами. Например, в британском фунте 100 пенсов, в одном евро 100 евроцентов, в долларе США тоже 100 центов. Это существенно упрощает расчеты, связанные с деньгами.

Если разделить 29 фунтов между двумя людьми, каждому человеку достанется 14½ фунта, или 14,5 фунта (поскольку 1/2 = 0,5). Это значение выглядит несколько странно, поэтому представим его с двумя знаками после запятой. То есть каждому достанется 14,50 фунта, или 14 фунтов и 50 пенсов.

Так как 100 % = 1, а 100 пенсов = 1 фунт, 1 % от фунта – это 1 пенс. Если в кофейне Barstucks чашка кофе и пирожное стоят 7 фунтов плюс 15 % сервисного сбора, несложно посчитать, сколько это будет: 15 % от 1 фунта = 15 пенсов, следовательно, 15 % от 7 фунтов – это 15 × 7 = 105 пенсов. Значит, всего нужно заплатить 7 + 1,05 = 8,05 фунта, и не пытайтесь всучить им 8 фунтов – как знать, что они добавят во взбитые сливки, когда вы придете в следующий раз.

Как выгадать на скидках

Умение сравнивать дроби и проценты поможет вам сэкономить. Предположим, вам нужно купить много батареек, и вы нашли три магазина, предлагающих разные скидки:



Без учета скидок батарейки в этих магазинах стоят 50 пенсов – где же их выгоднее купить? Для этого необходимо выяснить акционную цену одной батарейки.


Скидка 30 %:

В этом случае цена составит 70 % от обычной. 50 × 70 % = 50 × 0,7 = 35 пенсов. (Считать будет проще, если представить 50 × 0,7 как 5 × 10 × 0,7. Тогда 10 × 0,7 = 7, и ответ будет равен 5 × 7 = 35.)


Купи 2 и получи 1 бесплатно:

В этом магазине три батарейки предлагают по цене двух. Обычная цена двух батареек 2 × 50 = 1 фунт, но поскольку за эти деньги можно купить три батарейки, каждая обойдется в 1 ÷ 3 фунта, то есть около 33 пенсов.


Купи 1 и получи еще 1 за полцены:

Первая батарейка стоит 50 пенсов, а вторая 1/2 × 50 = 25 пенсов, следовательно, за обе вы отдадите 75 пенсов, то есть одна батарейка обойдется вам в 75 ÷ 2 = 37,5 пенса.


Наименьшая цена – около 33 пенсов, то есть выгоднее всего предложение «Купи 2 и получи 1 бесплатно». Но тут вы заметили еще один магазин, цена батареек в котором выше, 65 пенсов, зато там проходит акция «Купи 1 и получи еще 1 бесплатно». Во сколько в этом случае обойдется одна батарейка?



Две батарейки стоят 65 пенсов, значит, цена одной составит 65 ÷ 2 = 32,5 пенса. Это самое выгодное предложение!

Имея дело со скидками, обратите внимание на один момент: предположим, вы покупаете не батарейки, а местную газету. Вам нужен лишь один экземпляр, так что нет смысла покупать две газеты за 65 пенсов, если можно купить одну за 35 пенсов в магазине, где предлагают скидку 30 %. Как ни странно, некоторые люди не в силах устоять перед «самым выгодным предложением», даже если им оно не нужно!

Подсказки по процентам

Если вам надо найти указанное количество процентов от «чего-то», выполните с этим «чем-то» следующие действия.

50 %: разделить на 2

25 %: найти 50 % и разделить на 2

10 %: разделить на 10

5 %: найти 10 % и разделить на 2

2½%: найти 5 % и разделить на 2

1 %: разделить на 100

Комбинируя эти варианты, можно быстро вычислить и многие другие значения.


15 % от 25 фунтов:

10 % от 25 = 2,50, 5 % = 1,25. Сложив эти значения, получим 15 % = 3,75 фунта.


35 % от 70 фунтов:

50 % от 70 = 35, значит, 25 % = 17,50. 10 % от 70 = 7, значит, 35 % = 17,50 + 7 = 24,50 фунта.


17½% от 150 фунтов

10 % от 150 = 15, 5 % = 7,50 и 2½% = 3,75. Сложив эти три значения, получим 17½% = 26,25 фунта.

Три самых распространенных действия с процентами