Докажем, что a² + b² = c²
Внешние контуры обеих нижних фигур – это квадраты с длиной сторон (a + b). Это означает, что их площади равны и, следовательно, если из квадратов со стороной (a + b) вычесть площади четырех равных треугольников, то сумма площадей двух меньших квадратов будет равна площади большого квадрата. Вот мы и доказали, что a² + b² = c²!
Что такое вероятность
Вероятность наступления какого-либо события измеряется в простых дробях или процентах. Если что-то произойдет наверняка (например, насколько вероятно, что в следующем году пойдет дождь?), вероятность равна 1, или 100 %. Если что-то определенно не должно случиться (например, насколько вероятно, что у вас вырастут крылья?), вероятность равна 0, или 0 %. Если же событие в равной степени либо произойдет, либо нет (например, каковы шансы, что вы подбросите монетку и выпадет «орел»?), вероятность равна 1/2, или 50 %.
Когда событие крайне маловероятно, то проще сказать нечто вроде «вероятность выиграть джекпот в национальной лотерее Британии – примерно один шанс из 14 миллионов». Или, если точнее, это один шанс из 13 983 816, что соответствует дроби 1/13983816. Переводим ее в проценты и получаем 0,00000715 %.
Игральные кости
У обычной игральной кости шесть граней, поэтому шанс выбросить какое-либо конкретное число равен 1/6, или 16,7 %. Если же кидать две кости, может выпасть любая из 36 различных комбинаций.
Предположим, вам нужно выбросить 12 очков. Для этого должны выпасть две шестерки, и такой вариант только один среди 36 возможных комбинаций. Поэтому вероятность этого события составляет 1/36 = около 2,8 %.
Теперь допустим, что вы хотите получить сумму костей, равную 3. Для этого должно выпасть 2 и 1 либо 1 и 2, то есть всего две подходящие комбинации. Ваши шансы: 2/36 = 1/18 = около 5,6 %.
Чаще всего на костях выпадает сумма 7, поскольку для этого подходят шесть различных комбинаций. Вероятность такого события равна 6/36 = 1/6 = 16,7 %.
Дни рождения
А теперь, пожалуй, самое странное утверждение в этой книге: если в результате случайного отбора собрать в одной комнате 30 человек, вероятность того, что двое из них родились в один день, составит 70 %!
Чтобы это доказать, сперва выясним, каковы шансы, что ни у кого из 30 собравшихся дни рождения не совпадают (будем считать за совпадение одинаковый день и месяц, без учета года). Сначала в комнате находится один Фред, затем входит Джанет. Какова вероятность, что она родилась не в один день с Фредом? Будем считать, что в году 365 дней, и игнорировать високосные годы, потому что на ответ это практически не повлияет, но существенно усложнит вычисления.
Вероятность того, что Джанет родилась в один день с Фредом, равна 1/365. Следовательно, вероятность, что она не родилась с ним в один день, составит 364/365.
Третьим появляется Барни, и если день рождения Джанет не совпадает с днем рождения Фреда, то вероятность, что Барни не родился в один день с кем-то из них, равна 363/365. А вероятность того, что все трое родились в разные дни, составит:
364/365 × 363/365 = 99,18 %Входит Агнесс. Вероятность, что ее день рождения не совпадает с другими, равна 362/365, а вероятность, что все четверо родились в разные дни, составит:
364/365 × 363/365 × 362/365 = 98,37 %Постепенно комната заполняется, и мы перемножаем все больше и больше дробей, вычисляя вероятность несовпадения дат дней рождений. Когда в комнату заходит двадцать третий человек, происходит нечто странное. И наше уравнение приобретает следующий вид:
364/365 × 363/365 × 362/36 x… и так далее… × 345/365 × 344/365 × 343/365 = 49,27 %То есть шансов, что все родились в разные дни, теперь меньше 50 %, а значит, вероятность совпадения дней рождения у двух человек уже немного превышает 50 %. Выходит, такое совпадение скорее имеет место быть, чем не имеет!
К тому моменту, как в комнате соберется 30 человек, вероятность, что дни рождения у всех разные, снизится примерно до 30 %, а вероятность, что двое из присутствующих родились в один день, составит около 70 %. Если вам сложно в это поверить, в следующий раз, когда рядом окажутся 30 человек, поинтересуйтесь, когда они родились. Да, это удивительно, но факт.
Карты и покерные комбинации
Предположим, у вас есть обычная колода из 52 игральных карт и вы хотите знать, какова вероятность выпадения той или иной карточной комбинации. Некоторые из этих вероятностей довольно легко просчитать.
Каковы шансы, что вверху колоды будут две совпадающие по номиналу картыЕсли перетасовать колоду и снять верхнюю карту, она может оказаться любой, например четверкой треф. В колоде есть еще три совпадающие с ней по номиналу карты: четверка червей, четверка пик и четверка бубей. Всего остается 51 карта, следовательно, вероятность, что следующая карта совпадает с уже открытой, составит 3/51. Эту дробь можно сократить, разделив числитель и знаменатель на 3, получаем 1/17.
Иначе говоря, если многократно перетасовывать колоду и открывать две верхние карты, две совпадающие карты в среднем будут выпадать один раз из 17.
Каковы шансы, что вам сдадут пять карт одной мастиЕсли вы играете в покер, это, к вашей великой радости, будет флеш. Но насколько это вероятно?
Первое, что нужно понимать: не имеет значения, берете ли вы пять карт сверху перетассованной колоды или сидите за одним столом с другими игроками и получаете карты по одной во время раздачи. Так что представим, что вы просто взяли из колоды пять верхних карт.
Верхняя карта может быть любой. Очевидно, что по масти она совпадает с собой же, то есть вероятность совпадения равна 1 (или 100 %). Положим, это семерка бубей. Из оставшейся 51 карты 12 имеют ту же масть, стало быть, шанс, что и следующая карта совпадет по масти, составит 12/51.
Для третьей карты вероятность совпадения равна 11/50, поскольку среди 50 оставшихся карт 11 нужной масти, для четвертой карты – 10/49, а для пятой – 9/48. Чтобы вычислить вероятность совпадения масти для всех пяти карт, перемножим все эти вероятности.
Округлим последнюю некрасивую дробь: число 11 880 близко к 12 000, а 5 997 600 к 6 000 000. Это даст нам
12 000/6 000 000 = 1/500Таким образом, ваш шанс получить подряд 5 карт одной масти примерно равен 1 из 500, или 0,2 %.
Комбинации в покереВ покере комбинации ценятся тем выше, чем реже они выпадают. Вот их список в порядке уменьшения выигрыша:
1. 1 из 650 000: флеш-рояль (туз, король, дама, валет, 10 – все одной масти);
2. 1 из 72 000: стрит-флеш (пять последовательных карт одной масти, например 7, 8, 9, 10, валет);
3. 1 из 4000: каре (четыре карты одного номинала);
4. 1 из 700: фулл-хауз (тройка и пара карт одного номинала);
5. 1 из 500: флеш (пять карт одной масти);
6. 1 из 256: стрит (пять последовательных карт как минимум в двух мастях);
7. 2 %: тройка (например, три туза);
8. 5 %: две пары (например, две восьмерки и две тройки);
9. 42 %: пара (например, две дамы).
Покерный трюк на 10 картКак видите, любой фулл-хауз бьет тройку, а тройка бьет две пары. Вот трюк, которому я научился в Дублине у своего коллеги Роба Истэвея, тоже автора книг по математике. Предупреждаю: мы не несем никакой ответственности за то, как вы будете использовать эти сведения.
Вам понадобятся десять карт из колоды: три тройки и любая одиночная карта.
Играть нужно с другом – вы раздаете по пять карт ему и себе. Коварство фокуса в том, что вы с самого начала знаете, кто победит, а кто проиграет!
Секрет исключительно прост. Независимо от того, как перетасованы карты, игрок, которому достанется одиночная карта, проиграет! Если вы привыкли обращаться с картами, вам не составит труда придержать одну карту вверху или внизу колоды и убедиться, что она досталась нужному игроку. Если же вы не уверены в себе, слегка согните уголок одиночной карты, чтобы видеть, кому она досталась, и знать, кто победит.
Имеет смысл позволить вашему другу несколько раз выиграть, а затем, когда он утратит бдительность, поднять ставки и отыграться.
Некоторые забавные вероятности
Люди обожают судачить о всяких странных случайностях. Вот их небольшая подборка, но не принимайте ее слишком всерьез!
• Шансы найти четырехлистный клевер: 1 из 10 000, или 0,01 %.
• Вероятность, что беременная женщина вынашивает более чем одного ребенка, постепенно возрастает. На сегодняшний день шанс зачать двойню, тройню, а то и больше составляет примерно 3 %.
• Если во время того, как вы целитесь в мишень, играя в дартс, кто-то вдруг завяжет вам глаза и несколько раз повернет на месте, вероятность, что вы попадете в мишень вслепую, равна примерно 2 %. При этом шанс попасть в яблочко составит 1 из 100 000. Но, пожалуйста, не стоит проверять это на практике.
• Вероятность при игре в гольф забить мяч с одного удара составляет предположительно 1 из 5000.
• Вероятность, что вас поразит молния, примерно 1 из 3 000 000. По любопытному совпадению, такова же вероятность повстречать инопланетянина.
• Вероятность, что в следующем столетии в нашу Землю врежется астероид, составляет 1 из 5000. И если этот огромный гадкий астероид таки сделает свое грязное дело, каковы шансы, что аккурат перед этим вы повесите сушиться белье? Примерно 100 %.
• Какова вероятность получить высший балл на экзаменационном тесте, отмечая варианты наобум? Если в тесте 30 вопросов, каждый с четырьмя вариантами ответа, то вероятность составит 1 из 430 = 1 152 921 504 606 846 976. Если же для прохождения теста достаточно угадать не менее 50 % ответов, шансы на победу вычислить гораздо сложнее, но это будет примерно 1 шанс из 364. Впрочем, есть и хорошие новости: вероятность ответить неправильно на все вопросы составляет лишь 1 из 5600.