Две обманчивые вероятности
Люди часто заблуждаются, оценивая свои шансы на удачу, а вокруг, увы, полно бессовестных типов, которые этим пользуются, вовлекая доверчивых искателей легкого счастья во всевозможные аферы, а затем облапошивая их. Если вы один из таких прощелыг, вот пара несложных трюков вам на радость. Суть их в том, чтобы сначала убедить жертву, что удача на ее стороне, а затем обчистить до нитки.
И вот вы сидите за столом с бедным стариной Малькольмом и показываете ему три карточки: одна черная с обеих сторон, другая – белая, а третья с одной стороны черная, а с другой – белая.
Попросите Малькольма перетасовать не глядя карточки под столом, затем вытащить одну карточку и положить ее на стол так, чтобы никто из вас не заметил цвета нижней стороны. Остальные две карточки никто не должен видеть. Пусть верхняя сторона лежащей на столе карточки будет черная.
– Очевидно, это не белая с двух сторон карточка, – говорите вы, – значит, она или черная с белым, или черная с обеих сторон.
Малькольм глубокомысленно кивает в ответ.
– Выходит, что с равными шансами это та или другая карточка. (Малькольм снова кивает.) Спорим на один фунт, что другая сторона черная!
– Нет, спасибо, – отвечает Малькольм. Он что-то подозревает, хотя и не понимает, в чем подвох.
– Ой, да ладно, – подначиваете вы. – Знаешь, давай так: если другая сторона черная, ты платишь мне один фунт, а если белая, я плачу тебе полтора фунта. Годится?
Малькольму это предложение кажется слишком заманчивым, он кладет деньги на стол… и с вероятностью 2 шанса из 3 вы выигрываете. Иными словами, в среднем за три кона игры вы заплатите Малькольму полтора фунта, а он вам два.
А секрет вот в чем: какого бы цвета ни была верхняя сторона карточки, всегда ставьте на то, что другая сторона того же цвета. У двух карточек цвета сторон совпадают, и лишь у одной – разные. Поэтому у Малькольма всего один шанс на выигрыш из трех.
Если Малькольм всерьез задумается, он может догадаться, в чем дело, так что пора переходить ко второму трюку.
Этот трюк очень прост, но при этом весьма необычен! Идеально будет провернуть его с Малькольмом, когда он придет вместе со своей подругой Сандрой. Сандра поможет вам облегчить карманы Малькольма; нужно лишь, чтобы она выполняла ваши просьбы и не подсказывала Малькольму.
И что же получается, сделка выгодна для Малькольма? Конечно, нет. На самом деле вы снова должны выиграть с вероятностью 2 из 3. Хитрость в том, что при бросании монет кажется, будто есть три варианта того, как они могут лечь: два орла, две решки или орел и решка. Однако, взяв монеты разных размеров, вы увидите, что вариантов четыре:
Вы просили Сандру заново бросить монеты, если выпадут две решки, так что этот вариант исключен. Значит, когда дело дойдет до ставок, останется только три варианта. Когда Сандра покажет орла, в двух вариантах вторая монета лежит решкой. Поэтому в двух случаях из трех вы должны выиграть.
Прибыль букмекера
Предположим, перед вами стоит мешок с 12 шариками: один черный, 8 белых и 3 серых. Ваша задача – с закрытыми глазами вынуть один шарик из мешка. Если он черный, вы выиграли, но каковы шансы на победу? Очевидно, 1 из 12, что можно записать как 1/12.
Или же можно сказать, что есть 11 вариантов не вынуть черный шарик против одного варианта выигрыша. Получается коэффициент против выигрыша 11 к 1, который букмекеры обычно записывают как 11/1. Так они и рассчитывают ставки.
Букмекер, который не планирует получить прибыль, предложит вам коэффициент 11/1 против того, что вам попадется черный шарик. Если вы поставите 1 фунт и проиграете, фунт останется у букмекера. Если вы поставите 1 фунт и выиграете, он вернет ваш 1 фунт плюс еще 11 фунтов выигрыша.
Предположим, вы вынимаете шарики из мешка по одному. Вам известно, что 11 раз вы проиграете, а 1 раз выиграете. Если букмекер каждый раз будет предлагать вам коэффициент 11/1 после того, как вы достанете последний шарик, вы заплатите ему 11 × 1 фунт = 11 фунтов. Он же заплатит вам 1 × 11 фунтов = 11 фунтов, так что это честный, или чистый, коэффициент.
Вы решаете, что шансы вытащить черный шарик слишком малы, и потому хотите попытаться достать один из 8 белых шариков. Тогда вероятность вашего выигрыша составит 8/12. Букмекер говорит, что шансы против вашего выигрыша 4 к 8, то есть чистый коэффициент равен 4/8, или, после сокращения, 1/2. Если вы поставите 1 фунт и вытащите белый шарик, вы выиграете 1/2 × 1 фунт = 50 пенсов.
Наш букмекер также предлагает коэффициент 3 к 1 против того, что вы достанете один из серых шариков. Чтобы убедиться, что это чистый коэффициент, нужно преобразовать его в вероятность выбора серого шарика и посмотреть, верна ли она.
Из букмекерского коэффициента следует вероятность 1/4. Поскольку в мешке 3 серых шарика из 12, это дает вероятность 3/12, то есть 1/4. Выходит, это чистый (честный) коэффициент!
А вот хитрый момент. Положим, нам неизвестно, сколько в мешке шариков, мы только знаем, что они белые, серые и черные. Можно определить, насколько букмекер честен, посмотрев на все его коэффициенты, преобразовав их в вероятности и сложив их.
Если букмекер абсолютно честен, сумма вероятностей даст 1. Можно сложить три простые дроби или взять калькулятор, перевести их в десятичные и уже затем складывать, но в любом случае сумма вероятностей равна 1. Какой благородный букмекер! Жаль, что в реальности таких не существует.
Что касается ставок в спорте, то здесь не получится столь же легко найти вероятности, как для шариков в мешке. Более того, букмекер не может быть честным в том смысле, о котором мы говорили выше, ведь ему нужно получать прибыль, чтобы платить за свою спортивную машину, массивный золотой браслет и виллу в Португалии.
Давайте полюбуемся на Честного Сида и выясним, какую прибыль он надеется получить.
Сперва преобразуем коэффициенты Сида в вероятности: для 5/4 вероятность будет 4/9 или 0,444, «ровно» означает 1/1, то есть вероятность 1/2, или 0,5, а для 11/2 вероятность составит 2/13, или 0,154. Если сложить все десятичные дроби, получится 1,098.
Это говорит о том, что на каждые 100 фунтов, выплачиваемые Сидом, по его ожиданиям должно прийтись 100 фунтов × 1,098 = 109,80 фунта, то есть его прибыль должна составить 9,80 фунта.
Некоторые букмекеры также принимают ирреальные ставки: к примеру, на то, что Элвиса Пресли найдут живым-здоровым и что он работает в кафетерии. Уж лучше купить лотерейный билет, и хотя шанс сорвать джекпот составляет лишь 1/13983816, по сути, это куда более вероятно. Как сказал бы сам Король рок-н‑ролла: «Ну что же, раз (из примерно 14 миллионов) это ради денег…»[11].
Продвинутая математика
Итак, вы добрались почти до конца книги: поздравляю! Как насчет того, чтобы блеснуть интеллектом и доказать, что вам по зубам и более сложные теоретические штучки? Следующие два раздела посвящены математическим понятиям, которые вам вряд ли пригодятся в обыденной жизни, но с ними интересно в общих чертах ознакомиться, особенно если в школьные годы они являлись вам в кошмарах!
Углы, треугольники и тригонометрия
Угол между двумя пересекающимися линиями измеряют в градусах, обозначая их маленьким символом °. Если хотите посмотреть, какого примерно размера угол в 1°, возьмите длинную нитку, сложите ее пополам, проденьте в петлю большой палец и вытяните руку в сторону. Другой рукой возьмите концы нитки и держите их перед собой так, чтобы нитка была натянута. Угол в месте схождения двух концов и составит около 1°.
Угол между сторонами квадрата равен 90° и называется прямым. Если вы сделаете полный поворот вокруг своей оси, вы повернетесь на 360°. Угол в 180° представляет собой прямую линию; а сумма углов любого треугольника всегда будет 180°. Вырежьте треугольник из бумаги, оторвите его уголки и, сложив их вместе, получите прямую линию, как показано на рисунке ниже.
Четыре угла любого четырехугольника вместе составляют 360°, так что если их оторвать и сложить, они сойдутся один к одному без зазора.
Возможно, у вас есть калькулятор с кучей таинственных кнопок, которыми вы не пользуетесь? Это обидно, учитывая, что вы за них заплатили, так что давайте вкратце рассмотрим, что такое синус, косинус и тангенс.
Основная идея состоит в том, что если вы знаете длину только одной (или двух) стороны треугольника и его углы, то, воспользовавшись тригонометрией, можете вычислить то, что неизвестно. Проще всего иметь дело с прямоугольными треугольниками, поскольку достаточно знать длину одной из сторон и величину любого угла (помимо прямого), чтобы вычислить его остальные параметры.
Допустим, известна величина одного из углов; если взять сторону, противолежащую этому углу, и разделить на самую длинную сторону, то есть гипотенузу, получится дробь, которая называется синусом угла и обозначается словом sin. (Пишется точно так же, как английское sin, то есть «грех», но не спешите радоваться – порок и разврат здесь ни при чем.)
Предположим, вы пытаетесь достать свой любимый ботинок из водосточного желоба (бог знает, как он туда попал, но, сами понимаете, всякое бывает). В вашем распоряжении 8-метровая лестница, стоящая у стены здания.