Все становится интереснее, если надо от 73 отнять 9. Это то же самое, что и 70 + 3–9, однако с 3–9 так просто уже не разделаться.
Нам нужно сделать вот что: представим 73 как 60 + 13. Для этого придется поменять 7 на 6 и приписать перед 3 маленькую единичку. Поэтому я и пользуюсь бумагой в клеточку – тогда видно, что число сверху это 60 + 13, а не 613.
Далее вычисляем 13 − 9 = 4, и с единицами на этом покончено. От 70 же осталось 60, так что окончательный ответ: 60 + 4 = 64.
Теперь, уяснив основной принцип, перейдем к насущным задачам. Предположим, что вы решили построить модель линкора из 6305 спичек, но на данный момент у вас всего 1847 спичек – сколько еще спичек понадобится?
Вот пример, который нужно решить, и хитрость состоит в том, что начать следует с единиц и двигаться к старшим разрядам. Сначала придется разобраться с 5–7. Нам понадобится еще десяток, но у числа 6305 в столбце десятков стоит нуль, так что нам будет нужна еще и тройка в столбце сотен. Тогда мы получим требуемый десяток, вычислив 30 − 1 = 29.
Вы видите, что мы заменили 30 на 29 и добавили 1 перед 5. Теперь можно подсчитать: 15 − 7 = 8.
Разделавшись с единицами, закроем их бумажкой и сосредоточимся на остальной части выражения, а именно на вычитании 629–184. Поскольку 9–4 = 5, сразу запишем 5 в результат. Получается, что со столбцом десятков мы разобрались без проблем.
Учитывая, что от 2 восемь так просто не отнять, займем 1 из 6 (в столбце тысяч останется 5) и запишем 1 перед 2. Это даст нам 12 − 8 = 4. И наконец, в столбце тысяч будет 5–1 = 4.
Итак, вот что у нас получилось:
Теперь мы знаем, что, для того чтобы построить линкор, нам понадобится еще 4458 спичек. (И придется где-то их раздобыть или же найти себе другое хобби.)
Новый способ
В наши дни детей учат вычитать, взяв меньшее число и увеличивая его до тех пор, пока оно не сравняется с бо́льшим числом. Джанет, продавщица в кондитерской, именно так и поступает, когда выдает сдачу. Если вы дадите ей 5 фунтов за пирог, который стоит 2,23 фунта, она должна будет дать вам 2,77 фунта сдачи (5–2,23). Чтобы убедиться, что это так, Джанет комментирует свои подсчеты: сперва она говорит, сколько стоит пирог, затем прибавляет номинал каждой монеты (начиная с самых мелких), отсчитывая их, пока сумма не достигнет 5 фунтов.
Этот подход можно использовать и для вычитания чисел. Давайте опять вернемся к спичкам: нам нужно подсчитать, сколько будет 6305–1847. Начнем понемногу прибавлять спички к 1847, по ходу дела отслеживая, что происходит.
Это и есть ответ: 6305–1847 = 4458. На первый взгляд тут задействовано слишком много чисел, но потренировавшись, вы освоитесь с этим методом. Изящно, не правда ли?
Отрицательные числа
Перед отрицательными числами всегда стоит знак «минус», а перед положительными «плюс» обычно не пишут, разве что в таких выражениях: 3 + 6–4 = 5. Здесь числа 3, 6 и 5 – положительные, а 4 – отрицательное.
Всякое число будет либо положительным (+), либо отрицательным (–).
Иногда сумма может давать отрицательный результат, особенно если речь идет о деньгах.
Величина долга всегда вычитается, то есть она отрицательна.
Вычитание большего числа из меньшего поначалу может сбивать с толку. Для простоты понимания представьте себе линейку с нулем посередине. Положительные числа возрастают в одном направлении, отрицательные – в противоположном.
Когда женщина находит 5 фунтов, она продвигается на 5 шагов в положительном направлении.
Но когда мальчик требует 7 фунтов, это отбрасывает ее назад – до нуля и дальше, на отрицательную сторону линейки. Она лишилась своих 5 фунтов и должна еще 2 фунта.
В случае больших чисел уже не столь очевидно, сколько еще вы должны. Предположим, вы играете в «Монополию» и у вас есть 623 фунта. Вы останавливаетесь на Пикадилли, там четыре дома, и с вас причитается арендная плата 1025 фунтов. Вы отдаете все свои деньги, но понятно, что этого не хватает для полной уплаты аренды. Сколько еще осталось заплатить? Надо вычислить 623 фунта – 1025 фунтов.
Для простоты разобьем вычитание на два шага.
1. Если отрицательное число больше положительного, ответ будет отрицательным. Поэтому в конце вычислений убедитесь, что перед результатом стоит знак «минус».
2. Находим разность между двумя числами. Для этого вычитаем меньшее число из большего: 1025 − 623 = 402.
Не забудьте поставить знак «минус»! Ответ равен – 402 фунта, именно столько вы должны. Так что либо раскошеливайтесь, либо просто возьмите всю эту «Монополию», швырните ее в стену и любуйтесь, как разлетаются по комнате бумажки и пластиковые фишки. Вас за это, конечно, не похвалят, но зато вы получите определенное удовольствие.
Умножение
Трижды семь – двадцать один, четырежды семь – двадцать восемь… Чего уж скрывать, зазубривание таблицы умножения – на редкость утомительное занятие, однако эта таблица имеет слишком большую практическую ценность, чтобы просто забыть о ней как о страшном сне. Работать с ней будет гораздо легче, если вы освоите несколько трюков, быстрых приемчиков и прочих секретов взаимосвязи чисел в таблице.
Тайны таблицы умножения
В этой таблице показаны все результаты умножения от 1 × 1 до 10 × 10. Всего здесь 100 результатов. Первым делом давайте избавимся от некоторых из них.
При умножении на 10 в конец числа просто добавляется ноль. Это слишком легко и при переходе к умножению больших чисел нам не понадобится. Так что исключим из таблицы 10‑ю строку и 10‑й столбец.
Если поменять множители местами, ответ останется тем же. Например, и 3 × 7 и 7 × 3 равно 21. Поэтому уберем из таблицы все повторяющиеся результаты.
Итак, мы избавились от более чем половины ячеек. Посмотрим, что осталось.
Числа в серых ячейках называются квадратами целых чисел, или просто квадратами. Это результаты умножения каждого числа на само себя. Например, вдоль каждой стороны шахматной доски 8 клеток, поэтому полное количество клеток на доске будет равняться восьми в квадрате. Записывают это так: 82, что соответствует 8 × 8 = 64.
Если вы ненавидите зубрить таблицу умножения, можете заполнить ее ячейки еще одним способом. Сначала можно просто складывать нечетные числа 1, 3, 5, 7 и т. д. Начинаем с 1 + 3 = 4. Затем прибавляем 5, получаем 9, затем 7, получаем 16… Так вы вычислите квадраты всех чисел.
Если взять любую ячейку с квадратом числа и вычитать из нее нечетные числа, начиная с 1, то получатся значения по диагонали, идущей в другую сторону от исходной ячейки.
Таким образом, начав с 36 и отняв 1, получим 35, отняв 3, получим 32, вычтя 5, получим 27.
(Сравнив эту диаграмму с таблицей умножения, вы убедитесь, что все совпадает.)
Аналогичным способом, но с помощью четных чисел (2, 4, 6, 8…) можно заполнить и остальные ячейки. Посмотрите на диагональ, идущую ниже диагонали квадратов, ту, где стоят числа 2, 6, 12, 20… Эти значения можно получить, начав с 2, затем прибавив 4, затем 6, потом 8 и т. д. А взяв любое из этих чисел (например, 20), можно найти значения вдоль идущей в другую сторону диагонали – вычитая 2, затем 4, потом 6 (например, 20 − 2 = 18, 18 − 4 = 14 и 14 − 6 = 8).
Такие последовательности нечетных и четных чисел позволяют вывести всю таблицу умножения, ни разу при этом не выполнив умножения как такового!
Возьмите три любых последовательных числа: при перемножении первого и последнего всегда получится значение на единицу меньше, чем квадрат числа посередине.
Взяв числа 6, 7, 8 и сверившись с таблицей умножения, мы убедимся, что 6 × 8 = 48, а 7 × 7 (или 72) = 49.
Так будет с любыми последовательно идущими числами. Если известно, что 1482 = 21 904, можете быть уверены, что 147 × 149 = 21 903.
(Почему так происходит? Это одна из тех маленьких загадок, которые мы научимся решать когда перейдем к разделу «Алгебра».)
Простые числа
Простое число делится только на само себя и единицу. Например, число 10 не является простым (оно делится на 1, 2, 5 и 10), число 12 тоже (делится на 1, 2, 3, 4, 6, 12), а вот число 11 – простое (делится только само на себя и на 1). Если попробовать упаковать числа в ящики, не оставляя пустых мест, с простыми числами возникнут сложности, поскольку разделить их на равные части не получится.
Наименьшее простое число – это 2. Также это единственное четное простое число, поскольку все остальные четные числа делятся на 2. Следующие простые числа: 3, 5, 7, 11, 13, 17, 19, 23… и так далее до бесконечности.
Здесь представлены все числа от 1 до 100, причем числа в белых квадратиках – простые. Легко понять, где простое число наверняка не встретится: со второй строки и ниже простые числа не могут заканчиваться на 2, 4, 6, 8 или 0 (тогда они делились бы на 2) и на 5 (тогда они делились бы на 5). Что никому до сих пор не удалось выяснить, так это где обязательно должно появиться простое число. Был момент всеобщей радости из‑за числа 31, так как поскольку оно простое, простыми также являются 331, 3331, 33 331, 333 331 и т. д. Казалось, любая последовательность троек с единицей в конце даст простое число, и так считали до тех пор, пока кто-то не обнаружил, что 19 607 843 × 17 = 333 333 331. Кстати, если вам удастся найти между простыми числами общую закономерность, ваше имя будут помнить еще долго после того, как имена всех знаменитостей, которыми переполнена сейчас земля, канут в Лету.
Умножение на пальцах
Таблица умножения для числа 9 – одна из самых сложных, но в наши дни почти каждому школьнику знаком изящный способ запоминания.