Когда какой-то новый научный прием срабатывает и приводит к успеху, разумно бывает попробовать его на других аналогичных задачах. Трюк с возмущением орбиты блестяще сработал в случае с Нептуном — существование и местоположение планеты были предсказаны точно. В случае с Плутоном он тоже, на первый взгляд, работал блестяще, но лишь до тех пор, пока астрономы не поняли, что Плутон слишком мал, чтобы вызвать те аномалии, при помощи которых его предсказали.
Этот прием потерпел удручающую неудачу в поисках планеты под названием Вулкан. Речь не выдуманной планете из «Звездного пути», родине мистера Спока, которая, если верить писателю-фантасту Джеймсу Блишу, обращается вокруг звезды 40 Эридана A. Нет, это выдуманная планета, обращающаяся вокруг неприметной и довольно обычной звезды, известной писателям-фантастам как Сол. Или, более привычно, Солнце. Вулкан преподает нам несколько полезных уроков о науке — не только сообщает очевидный факт о том, что ошибки случаются, но и учит, что осознание прошлых ошибок может уберечь нас от их повторения. Его предсказание связано с введением положений теории относительности в физику Ньютона с целью ее улучшения. Но, как говорится, об этом позже.
Нептун был открыт благодаря аномалиям в орбите Урана. Вулкан был призван объяснить аномалии в орбите Меркурия — и предложил его не кто иной, как Леверье, в работе, вышедшей еще до открытия Нептуна. В 1840 году директор Парижской обсерватории Франсуа Араго решил применить закон всемирного тяготения Ньютона к орбите Меркурия и попросил Леверье провести необходимые расчеты. Теоретические данные можно было проверить во время прохождения Меркурия по диску Солнца — так называемого транзита; можно было очень точно засечь моменты начала и окончания транзита Меркурия. Событие это должно было состояться в 1843 году, и незадолго до него Леверье завершил свои расчеты, дав возможность предсказать соответствующие моменты времени. К его изумлению, наблюдения разошлись с теорией. Леверье вернулся к чертежной доске и подготовил более точную модель движения планеты, основанную на многочисленных наблюдениях и 14 транзитах. В результате к 1859 году он выявил и опубликовал небольшой, но загадочный аспект движения Меркурия, объяснивший его первоначальную ошибку.
Точка, в которой орбитальный эллипс Меркурия подходит ближе всего к Солнцу, известна как перигелий (peri — близкий, helios — Солнце) и представляет собой четко определенную характеристику орбиты. Со временем перигелий Меркурия медленно вращается относительно далеких («неподвижных») звезд. В сущности, вся орбита целиком медленно поворачивается, оставляя Солнце в своем фокусе; для этого существует специальный термин — прецессия. Математическая закономерность, известная как теорема Ньютона о вращении орбиты[31], предсказывает этот эффект как результат возмущений орбиты со стороны других планет. Однако, когда Леверье подставил в эту теорему результаты наблюдений, числа, получившиеся в результате, чуть-чуть не совпали с реальными. Теория Ньютона предсказывала, что перигелий Меркурия должен смещаться в результате прецессии на 532ʺ (угловые секунды) за каждые сто лет; однако по результатам наблюдений прецессия составила 575ʺ. Что-то вызывало дополнительные 43ʺ прецессии за столетие. Леверье предположил, что за это отвечает какая-то неизвестная планета, обращающаяся ближе к Солнцу, чем Меркурий; он назвал эту планету Вулканом — в честь древнеримского бога огня.
Понятно было, что сияние Солнца затмевает любой свет, отражаемый настолько близкой к светилу планетой, так что единственный реальный способ увидеть Вулкан — поймать его на транзите, во время которого он должен быть виден на диске Солнца как крохотная темная точка. Вскоре астроном-любитель Эдмон Лескарбо объявил, что действительно видел такую точку, причем это не могло быть солнечное пятно, потому что двигалось оно с неправильной скоростью. В 1860 году Леверье объявил об открытии Вулкана и был удостоен за это ордена Почетного легиона.
К несчастью для Леверье и Лескарбо, оказалось, что в тот же период времени Солнце наблюдал еще один астроном — Эммануэль Лиэ. Он пользовался более качественным оборудованием, чем Лескарбо, и работал по поручению бразильского правительства, но при этом не видел ничего подобного. На кону оказалась его репутация, он категорически отрицал, что транзит действительно имел место. Разгорелись жаркие и путаные споры. Леверье умер в 1877 году, по-прежнему веря, что открыл еще одну новую планету. Без поддержки Леверье теория Вулкана потеряла темп, и вскоре астрономы пришли к единому мнению: Лескарбо ошибся. Предсказание Леверье осталось неподтвержденным, и среди астрономов возобладал скепсис. Окончательно интерес к Вулкану пропал в 1915 году, когда Эйнштейн, воспользовавшись своей новой теорией — общей теорией относительности, рассчитал дополнительную прецессию перигелия Меркурия, равную 42,98ʺ, без привлечения каких бы то ни было новых планет. Теория относительности тем самым получила подтверждение, а Вулкан был сдан в архив.
Мы и сегодня не можем быть до конца уверены, что между Меркурием и Солнцем нет неизвестных нам тел, хотя, если такое тело существует, оно должно быть очень небольшим. Генри Куртен, заново проанализировав фотографии солнечного затмения 1970 года, заявил, что обнаружил на них по крайней мере семь таких тел. Их орбиты было невозможно определить, и заявления Куртена остались неподтвержденными. Но поиск вулканоидов, как называют такие тела, продолжается[32].
5. Небесная полиция
У динозавров не было космической программы, в результате их нет здесь и они не могут обсуждать эту проблему. Мы здесь, и у нас есть возможность что-то с этим сделать. Я не хочу, чтобы люди стали позором Галактики: имели возможность отразить астероид, но не сделали этого и в результате вымерли.
Преследуемая целой флотилией межзвездных военных кораблей, стреляющих испепеляющими молниями чистой энергии, небольшая группа храбрых борцов за свободу ищет укрытия в поясе астероидов; их кораблик дико мечется в плотном потоке крутящихся валунов размером с Манхэттен, которые то и дело врезаются друг в друга. Крейсеры преследуют их, испаряя небольшие камни лучами своих лазеров и получая в борт целый дождь небольших осколков. Хитрым маневром уходящий от погони кораблик закладывает петлю, ложится на обратный курс и ныряет в глубокий туннель в центре случайно подвернувшегося кратера. Но приключения героев только начинаются…
Захватывающее кинематографическое зрелище.
И к тому же полная чепуха. Нет, я говорю не о флотилии военных кораблей, не о молниях энергетических зарядов и не о галактических повстанцах. Я даже не имею в виду чудовищного червя, притаившегося в конце туннеля. Все это может когда-нибудь произойти. Я имею в виду бурный поток крутящихся камней. Этого не может быть никогда.
Мне кажется, все дело здесь в неудачной метафоре. Пояс.
Когда-то давно в Солнечной системе, как ее тогда понимали, не было пояса. Вместо него был загадочный пропуск. Согласно закону Тициуса — Боде, между Марсом и Юпитером, по идее, должна была бы находиться планета, но планеты там нет. Если бы она была там когда-нибудь, древние ее непременно заметили бы и связали с ней еще кого-нибудь из своих богов.
Уран, когда он был открыт, так аккуратно вписался в математическое правило закона Тициуса — Боде, что астрономы с новым энтузиазмом принялись искать что-нибудь в промежутке между Марсом и Юпитером, надеясь заполнить и его. Как мы видели в предыдущей главе, им это удалось. Барон Франц Ксавер фон Цах в 1800 году основал Объединенное астрономическое общество (Vereinigte Astronomische Gesellschaft), в которое вошло 25 человек — среди них Маскелайн, Шарль Мессье, Уильям Гершель и Генрих Ольберс. Поскольку свою деятельность эта группа посвятила в основном упорядочению непослушной Солнечной системы, ее окрестили Небесной полицией (Himmelspolizei). Каждому наблюдателю был выделен 15-градусный сектор эклиптики и поставлена задача поиска в этой области недостающей планеты.
Как часто бывает, весь этот систематический и организованный подход перевесила удача, выпавшая на долю астронома, не вошедшего в круг избранных, — Джузеппе Пиацци, профессора астрономии в Университете Палермо на Сицилии. Он не занимался поисками планеты; он искал звезду, «87-й номер в каталоге господина Лакайля». В самом начале 1801 года возле искомой звезды он заметил еще одну световую точку, на которую в существующих звездных каталогах не нашлось никакой информации. Продолжая наблюдать за непрошеным гостем, Пиацци обнаружил, что эта светящаяся точка движется. Открытый им объект находился в точности там, где закон Тициуса — Боде предписывал искать недостающую планету. Пиацци назвал новое небесное тело Церерой — в честь римской богини плодородия, которая считалась также покровительницей Сицилии. Поначалу он думал, что открыл новую комету, но объекту недоставало характерного хвоста. «Мне несколько раз приходило в голову, что это могло бы оказаться что-то получше, чем комета», — писал он, имея в виду, естественно, планету.
По планетарным масштабам Церера довольно мала, и астрономы чуть не потеряли ее снова. Информации об ее орбите было очень мало, и, прежде чем астрономы успели провести дополнительные измерения, движение Земли привело направление на новое тело слишком близко к Солнцу, так что его слабый свет потерялся в сиянии светила. Ожидалось, что новооткрытое тело вновь появится на небосводе через несколько месяцев, но наблюдений было так мало, что было совершенно неясно, где его следует искать. Не желая начинать поиски заново, астрономы попросили у научного сообщества более надежное предсказание. На призыв ответил сравнительно малоизвестный тогда публике Карл Фридрих Гаусс. Он придумал новый способ вычисления орбиты по трем и более наблюдениям, известный сегодня как метод Гаусса. Когда Церера дисциплиниро