Математика космоса. Как современная наука расшифровывает Вселенную — страница 40 из 74

Возможно, между пятнообразовательной активностью Солнца и климатом Земли существует какая-то связь, но связь эта, даже если она есть, вероятно, слаба. Маундеровский минимум совпал с серединой Малого ледникового периода — длительного периода необычно низких температур в Европе. То же можно сказать и о следующем периоде низкой солнечной активности — минимуме Дальтона (1790–1830 годы), включающем и знаменитый «год без лета» (1816 год), но низкие температуры того года объясняются гигантским вулканическим взрывом горы Тамбора на острове Сумбава в Индонезии. Малый ледниковый период также мог быть вызван, по крайней мере отчасти, высоким уровнем вулканической активности. Минимум Шпёрера (1460–1550 годы) связан еще с одним периодом похолодания; о минимуме солнечной активности в этот период свидетельствует связанное с ним содержание изотопа углерода-14 в годовых кольцах деревьев. Записи о солнечных пятнах в этот период не велись.



Если нанести на график не только число солнечных пятен, но и их широту, получится забавная картина, напоминающая длинный ряд бабочек. Цикл начинается пятнами возле полюса, но постепенно, по мере приближения их числа к максимуму, пятна начинают появляться ближе к экватору. В 1908 году Джордж Хейл сделал первый шаг к пониманию такого поведения пятен; он связал солнечные пятна с необычайно мощным магнитным полем Солнца. Хорас Бэбкок смоделировал динамику магнитного поля Солнца в самых внешних его слоях и связал цикл солнечных пятен с периодическими изменениями полярности солнечного динамо. В его теории полный цикл длится 22 года, причем две его половины разделяет инверсия магнитных полюсов с южного на северный и наоборот.

Солнечные пятна кажутся темными только по сравнению с их окружением; их температура составляет около 4000 K, в то время как газы вокруг них имеют температуру 5800 K. Солнечные пятна похожи на магнитные бури в супергорячей солнечной плазме. Их математика управляется магнитной гидродинамикой — чрезвычайно сложной дисциплиной о намагниченной плазме. Представляется, что солнечные пятна — это верхние концы трубок магнитного потока, берущих начало глубоко в недрах Солнца.

Усредненная форма магнитного поля Солнца — диполь, напоминающий собой стержневой магнит; у него есть северный полюс, южный полюс и силовые линии, идущие от одного к другому. Полюса выстроены вдоль оси вращения, и за время нормально протекающих циклов солнечных пятен их полярности меняются местами каждые 11 лет. Так что магнитный полюс в «северном полушарии» Солнца иногда представляет магнитный север, а иногда — магнитный юг. Солнечные пятна, как правило, появляются связанными парами, причем поле между ними напоминает поле стержневого магнита, ориентированного вдоль линии восток — запад. Пятно, которое появляется первым, имеет ту же полярность, что и ближайший полюс основного магнитного поля, а второе пятно, которое появляется следом, — противоположную полярность.

Солнечное динамо, формирующее магнитное поле нашего светила, вызывается к жизни конвективными циклонами во внешнем слое Солнца толщиной 200 000 километров в сочетании с особенностью вращения звезды: на экваторе вращение происходит быстрее, чем вблизи полюсов. Магнитные поля «захватываются» плазмой и, как правило, движутся вместе с ней, так что силовые линии, первоначально идущие от полюса к полюсу и пересекающие экватор под прямым углом, начинают закручиваться по мере того, как экваториальная область утягивает их вперед по отношению к приполярным областям. Силовые линии перекручиваются, поля противоположных полярностей переплетаются. Солнце продолжает вращаться, линии магнитного поля закручиваются все плотнее, и, когда напряжения достигают критической величины, трубки изгибаются и выходят на поверхность. Линии поля вытягиваются, а связанные с ними солнечные пятна дрейфуют к полюсу. Ведомое пятно достигает полюса первым и, поскольку оно имеет противоположную полярность, вызывает — не за один раз, а после множества аналогичных событий — смену полюсов магнитного поля Солнца. После этого цикл повторяется уже с перевернутым полем.

Одна из теорий минимума Маундера состоит в том, что дипольное поле Солнца дополняется квадрупольным полем — это как два стержневых магнита, уложенные рядом. Если период смены полюсов квадруполя слегка отличается от соответствующего периода диполя, между ними возникают «биения» — как при звучании двух близких, но не совпадающих музыкальных нот. Результатом являются долгопериодические колебания средней величины поля на протяжении цикла, и, когда оно затухает, солнечных пятен почти не возникает. Более того, квадрупольное поле в разных полушариях имеет противоположные полярности и потому усиливает дипольное поле в одном полушарии и в то же время гасит его в другом. Поэтому те немногие пятна, которые все же возникают, все появляются в одном полушарии, что, собственно, и происходило во время минимума Маундера. Аналогичные эффекты косвенно наблюдались и на других звездах, на которых, возможно, тоже бывают пятна.



Силовые линии поля, выходящие за пределы фотосферы, могут порождать солнечные протуберанцы — громадные петли раскаленного газа. Эти петли могут размыкаться и пересоединяться, позволяя плазме вместе с линиями магнитного поля уноситься прочь с солнечным ветром. Так возникают солнечные вспышки, способные нарушать линии связи и наносить вред электрическим сетям и искусственным спутникам. Часто за ними следуют корональные выбросы массы, когда из короны — разреженной области за пределами фотосферы, видимой глазом во время солнечного затмения, — высвобождаются громадные количества вещества.

* * *

Фундаментальный вопрос: насколько далеки от нас звезды? Так получилось, что единственной причиной, благодаря которой мы знаем ответ для любых тел, расстояния до которых превышают несколько десятков световых лет, мы также обязаны астрофизике, хотя первоначально ключевые наблюдения имели чисто эмпирический характер. Генриетта Ливитт нашла эталонный источник света и тем самым придумала «линейку» для звездных расстояний.

В VI веке до нашей эры древнегреческий философ и математик Фалес оценил высоту египетской пирамиды при помощи геометрии, измерив собственную тень и тень пирамиды на поверхности земли. Отношение высоты пирамид к длине ее тени равно отношению роста Фалеса к длине его тени. Три из четырех длин в этом уравнении легко можно измерить, так что четвертую величину можно вычислить. Изобретательный метод, примененный Фалесом, — простой пример того, что мы сегодня называем тригонометрией. Тригонометрия, то есть геометрия треугольников, помогает соотнести углы треугольников с их сторонами. Арабские астрономы использовали эту идею для изготовления инструментов, а в средневековой Испании эта идея вновь вернулась на землю в виде топографической съемки. Расстояния на земле трудно измерять, потому что на пути часто встречаются препятствия, но углы всегда доступны и измеряются легко. Чтобы измерить направление на удаленный объект, можно воспользоваться палкой и веревкой — или, еще лучше, визирной оптической трубой. Для начала следует измерить — как можно точнее — известный базовый отрезок, или базис. После этого вы измеряете углы от каждого конца отрезка на какую-то третью точку и вычисляете расстояния до этой точки. Теперь у вас появляется еще два известных расстояния, и вы можете повторить весь процесс, «триангулируя» участок, который хотите нанести на карту, и вычисляя все расстояния на нем на основании одного-единственного точно измеренного отрезка.

Известна история, как Эратосфен измерил при помощи геометрии размер Земли, просто заглянув в колодец. Он сравнил угол, под которым видно полуденное Солнце в Александрии и Сиене[62] (современный Асуан), и оценил расстояние между ними по времени, за которое караван верблюдов может пройти из одного города в другой. Далее, зная размер Земли, можно пронаблюдать Луну из двух разных точек и вычислить расстояние до нее. Кроме того, этим же методом можно определить расстояние до Солнца.

Каким образом? Около 150 года до нашей эры Гиппарх понял, что, когда Луна находится в первой или последней четверти, то есть освещена ровно наполовину, линия, проведенная от Луны к Солнцу, перпендикулярна линии от Земли к Луне. Значит, достаточно измерить угол между базовой линией Земля — Луна и линией Земля — Солнце, чтобы рассчитать, как далеко от нас находится Солнце. Его оценка этого расстояния — три миллиона километров в пересчете на современные единицы — оказалась слишком скромной: реальное расстояние составляет 150 миллионов километров. Оценка Гиппарха оказалась ошибочной потому, что он считал названный угол равным 87°, тогда как на самом деле он очень близок к прямому. Однако если воспользоваться более качественными инструментами, таким методом можно получить точную оценку.

На пути определения космических расстояний этим методом можно сделать еще один шаг. Мы можем воспользоваться орбитой Земли как базой и определить таким образом расстояние до какой-либо звезды. Земля за полгода проходит половину своей орбиты. Астрономы определяют параллакс звезды как половину угла между двумя лучами зрения на эту звезду, проведенными с противоположных концов орбиты Земли[63]. Расстояние до звезды обратно пропорционально ее параллаксу, причем параллакс в одну угловую секунду соответствует приблизительно 3,26 световым годам. Эта единица расстояния называется парсек (параллакс секунда), и многие астрономы предпочитают ее световому году[64].

Еще в 1729 году Джеймс Брэдли пытался измерить параллакс одной из звезд, но его приборы не обладали для этого достаточной точностью. В 1838 году Фридрих Бессель воспользовался одним из гелиометров Фраунгофера — телескопом новой, весьма продвинутой конструкции появившимся уже после смерти Фраунгофера, — для наблюдения звезды 61 Лебедя. Он измерил ее параллакс, равный 0,31 угловой секунде (это сравнимо с углом, под которым виден теннисный мячик с расстояния 50 километров), и определил расст