Математика любви. Закономерности, доказательства и поиск идеального решения — страница 4 из 16


Набор A


Набор Б


Первый набор состоял из двух изображений Адама (нормального и испорченного) и нормального изображения Бена (верхний ряд). Во втором наборе было, соответственно, два изображения Бена и одно изображение Адама (нижний ряд).

Ариэли раздал эти наборы шести сотням своих студентов, причем половина из них получила только первый набор, а половина – только второй. Затем он попросил назвать наиболее привлекательное из лиц на фото.

Самих “уродцев” не выбрал никто, однако присутствие их фото в наборах повлияло на участников эксперимента самым драматическим образом.

Три четверти из тех студентов, которым достался набор с искаженным изображением Адама, сочли наиболее привлекательным исходное фото Адама. С набором, в котором был “искаженный” Бен, произошла ровно противоположная история: 75 % участников назвали самым привлекательным “исходного” Бена.

Таким образом, в обоих наборах искаженные версии Адама или Бена работали на то, чтобы их “нормальные” изображения казались более привлекательными. Это и есть “эффект приманки”.

Вывод, который можно из этого сделать, очевиден: отправляясь на вечеринку или первое свидание с потенциальным партнером, захватите с собой приятеля или подружку, похожих на вас, но при этом чуть менее привлекательных. Их присутствие оттенит ваши выгодные черты.

Если же мое предложение кажется вам не вполне этичным, вспомните, что все описанные выше оценки мы делаем инстинктивно. Математика – это язык природы, и прислушиваясь к тому, что говорит нам природа, мы можем лучше понять, как и почему мы делаем то, что делаем. В конце концов, как говорил Бернард Шоу, “любить – это значит чудовищно преувеличивать разницу между одной женщиной и другой”. Так что не стесняйтесь использовать “эффект приманки” в своих интересах.

3. Как извлечь максимальный эффект из вечеринки?

Хотя большая часть этой книги посвящена поиску истинной, прочной, романтической любви, известно, что время от времени и женщины, и мужчины исходят из гораздо более низменных побуждений. Кое-кто считает, что вечер пятницы пропал зря, если не закончился в незнакомой постели. Другим достаточно потной толкотни на танцполе. Но каковы бы ни были ваши собственные устремления, в этой главе мы расскажем, как максимизировать свои шансы на успех у объекта вашей страсти (или, по крайней мере, у партнера на одну ночь).

Допустим, вы пришли на вечеринку в компании друзей (таких же одиночек), и они вполне готовы помочь вам с кем-нибудь познакомиться. Как себя вести? Может быть, просто пассивно ждать, пока потенциальный партнер обратит на вас внимание? Или следует набраться духу и самому подойти к одной из звезд танцпола, рискуя нарваться на унизительный отказ? И к кому именно подойти, чтобы шансы на успех были максимальными?

Джентльмены предпочитают блондинок

Те, кто смотрел фильм “Игры разума” (A Beautiful Mind, 2001), могут считать, что математика уже ответила на этот вопрос. Фильм описывает жизнь математического гения Джона Нэша, и в нем в беллетризованной форме описываются некоторые из главных математических озарений ученого. В одной из самых знаменитых сцен фильма Нэш и трое его обаятельных приятелей встречают в баре компанию из пяти девушек: четырех брюнеток и одной блондинки (она самая симпатичная из всех).

Все парни тут же обращают внимание на блондинку. Они готовы все вместе начать ухаживать за ней, однако Нэш предлагает другую тактику. Будет лучше для всех, говорит он, если они проигнорируют блондинку, а начнут заигрывать с четырьмя ее темноволосыми подругами:

Если мы все начнем клеиться к блондинке, то “заблокируем” друг друга, и она не достанется никому. Тогда мы начнем заигрывать с ее подругами, но нас ждет холодный прием, потому что кому же хочется быть запасным вариантом. Но что, если никто из нас не станет ухаживать за блондинкой? Мы не будем мешать друг другу и не обидим остальных девушек. Это единственный способ победить.

Тут я на минуту остановлюсь, чтобы обратить ваше внимание на невысказанные допущения:

1. Блондинка готова ответить на ухаживания любого, кто к ней подойдет, при условии, что это будет один человек.

2. Женщины вообще не имеют права голоса в вопросе выбора кавалера.

3. Выбирая между возможностью провести вечер с кем-то, кто не очень нравится, или перспективой вообще остаться ни с чем, все выбирают первое.


Если отбросить блистательное изображение “равенства полов” образца 1950 года, этот пример иллюстрирует интересную, хотя и достаточно парадоксальную точку зрения: не всегда оптимальная стратегия заключается в том, чтобы выбирать именно того партнера, который нравится вам больше всего. В фильме, по крайней мере, вечер заканчивается ко всеобщему удовольствию именно потому, что участники игнорируют свои личные предпочтения.

Этот эпизод служит иллюстрацией математической теории, которая называется теорией игр – она позволяет формализовать стратегии и найти наилучшую тактику в той или иной ситуации.

Несмотря на свое название, теория игр занимается не только развлечениями. Ее можно применить в любой ситуации, где соревнуются двое или больше конкурентов. В данном случае друзья боролись за девушку, но вообще-то теорию игр с успехом используют где угодно, от эволюционной биологии (животные с различными особенностями внутри одного вида конкурируют за пищу и другие ресурсы) до экономики и политики (правительства уравновешивают шансы конкурирующих сторон, чтобы влиять на социальное поведение граждан).

В примере из фильма “Игры разума” единственная стратегия, при которой все мужчины могут остаться в выигрыше, действительно состоит в том, чтобы игнорировать блондинку. Тем не менее в плане главного героя фильма есть уязвимое место: каждый из парней может легко обмануть своих приятелей, пообещав следовать плану, но в последний момент переметнуться от брюнетки к блондинке и выиграть, таким образом, главный трофей. При этом каждому из оставшихся парней все равно достанется одна из девушек, однако в целом этот сценарий не подходит для тех, кто ценит своих друзей и боится их потерять.

Но стоит ли сразу же коварно ставить подножку друзьям – а что, если допущения Нэша ошибочны? Вдруг блондинка окажет явное предпочтение самому красивому парню и не проявит никакого интереса к остальным? Что ж, тогда дальнейшая тактика каждого очевидна: красавчик остается с блондинкой, оставшиеся трое выбирают себе в пару одну из брюнеток. И даже если кто-то из троих в последнюю минуту вдруг все-таки решит попытать счастья с блондинкой, его попытка будет отвергнута (и заодно понизит его шансы добиться благосклонности брюнетки).

В результате каждый из парней будет действовать, исходя из собственных интересов (это называется “равновесием Нэша”), но в то же время эти действия оказываются максимально выгодными для всей группы парней в целом (а это уже “равновесие Парето”).

К сожалению, в реальной жизни редко возникают такие прямолинейные ситуации: четыре одинаковых брюнетки без комплексов и одна сногсшибательная блондинка, от которой все без ума. В реальной жизни у членов реальной группы, скорее всего, будут разные предпочтения, и обычно бывает трудно убедить их принести эти предпочтения в жертву общему благу.

Итак, давайте пока оставим теорию игр. Но это не значит, что математика неспособна помочь вам с пользой провести вечер пятницы: чтобы изучить более жизненную ситуацию, давайте обратимся к еще одной изящной теории. Она показывает, насколько предприимчивым следует быть, отправившись на поиски приключений.

К кому подойти на вечеринке?

Представим себе компанию из трех молодых людей и трех девушек, весело болтающих в клубе. Назовем их Джоуи, Чендлер, Росс, Фиби, Моника и Рейчел. Предположим, что у каждого из этих юношей и девушек есть определенные предпочтения, ранжированный список тех, с кем им хотелось бы завести роман.

Несмотря на то, что все персонажи и события в этом случае полностью вымышлены и никак не связаны ни с одним из тщательно охраняемых авторским правом сериалов, я решила – опятьтаки, совершенно случайно – сделать Монику и Росса братом и сестрой. Но я также решила, что они скорее покинут вечеринку вместе (оставшись в платонических отношениях, разумеется), чем в одиночку, так что они все равно являются друг для друга выбором третьей очереди.

Самая популярная девушка – Рейчел, она стоит на первом месте и в списке Росса, и в списке Чендлера. В то же время и Рейчел, и Моника в своих рейтингах на первое место поставили Джоуи.




Налицо конфликт интересов, и если никто не хочет уйти с вечеринки без пары, необходим какой-то компромисс.

Если этот сценарий будет разыгрываться по весьма старомодному правилу “кавалеры приглашают дам”, то каждый из молодых людей попытается приударить за своей девушкой из первой очереди выбора.

Поскольку за Рейчел будут ухаживать одновременно Росс и Чендлер, ей придется выбирать между ними. В ее списке Росс стоит выше, чем Чендлер, так что будем считать, что Рейчел и Росс образовали пару – во всяком случае, пока (ведь Рейчел все еще втайне надеется, что на нее обратит внимание Джоуи).

Чендлер, оставшийся без партнерши и продолжающий поиск, обратится к своей девушке “второго выбора” – Монике. Поскольку у Моники нет других вариантов, она примет ухаживания Чендлера, хотя, как и Рейчел, предпочла бы Джоуи.

Фиби, не получив предложений ни от Росса, ни от Чендлера, остается с Джоуи.

Итак, теперь все утряслось, у всех парней есть пары:

1. Росс – Рейчел.

2. Чендлер – Моника.

3. Джоуи – Фиби.


Создалась ситуация, которую, с точки зрения парней, уже нельзя улучшить. Лишь Чендлер остался без своего выбора первой очереди – Рейчел, но она сама его отвергла. У парней нет причин меняться партнершами, даже если кто-то из девушек вдруг решит сделать еще одну попытку остаться с парнем, который ей нравится в первую очередь. Конечно, Рейчел предпочла бы Джоуи, но тот ведь уже получил свой предпочтительный выбор и совершенно не заинтересован в обмене.