P, приводит к противоречию. Кроме того, Ламберт понял, что любая система аксиом, которая не приводит к противоречию, порождает свою геометрию. Любая такая геометрия логически ничему не противоречит, хотя и имеет весьма косвенное отношение к реальным физическим фигурам!
Работы Ламберта и других математиков, в частности Абрахама Г. Кестнера (1719-1800), профессора Гёттингенского университета, у которого учился Гаусс, заслуживают того, чтобы упомянуть о них особо. Эти ученые были убеждены, что аксиому Евклида о параллельных нельзя доказать на основе девяти остальных аксиом евклидовой геометрии, т.е. что она независима от остальных аксиом Евклида. Все трое названных нами математиков признавали возможность неевклидовой геометрии, т.е. геометрии, в которой аксиома о параллельных существенно отличается от евклидовой.
Наиболее выдающимся среди математиков, работавших над проблемой аксиомы Евклида о параллельных, был Карл Фридрих Гаусс (1777-1855). Гаусс прекрасно знал о тщетных попытках вывести аксиому о параллельных из остальных аксиом евклидовой геометрии, ибо в Гёттингене об этом были наслышаны все. Но до 1799 г. Гаусс все же не прекращал попытки вывести аксиому Евклида о параллельных из других, более правдоподобных предположений; он был убежден, что евклидова геометрия отражает геометрию физического пространства, хотя допускал возможность существования логически непротиворечивых неевклидовых геометрий. Но в письме своему другу и собрату по математике Фаркашу Бойаи (Больяй) от 16 декабря 1799 г. Гаусс сообщал:
Я лично далеко продвинулся в моих работах (хотя другие, совершенно не связанные с этим занятия оставляют мне для этого мало времени); однако дорога, которую я выбрал, ведет скорее не к желательной цели, а к тому, чтобы сделать сомнительной истинность геометрии. Правда, я достиг многого, что для большинства могло бы сойти за доказательство, но это не доказывает в моих глазах ровно ничего.
Начиная с 1813 г. Гаусс разрабатывал свой вариант неевклидовой геометрии, которую он назвал сначала антиевклидовой, затем астральной и наконец неевклидовой геометрией. Убедившись в ее логической непротиворечивости, Гаусс не сомневался в ее применимости к реальному миру.
В письме к своему другу Францу Адольфу Тауринусу (1794-1874) от 8 декабря 1824 г. Гаусс писал:
Допущение, что сумма углов треугольника меньше 180°, приводит к своеобразной, совершенно отличной от нашей [евклидовой] геометрии; эта геометрия совершенно последовательна, и я развил ее для себя совершенно удовлетворительно… Предложения этой геометрии отчасти кажутся парадоксальными и непривычному человеку, даже несуразными; но при строгом и спокойном размышлении они не содержат ничего невозможного.
Мы не будем вдаваться в подробности того варианта неевклидовой геометрии, который был создан Гауссом. Он начал даже, хотя не довел до конца, полное дедуктивное изложение своей геометрии. Доказанные им теоремы во многом напоминают теоремы, с которыми нам еще предстоит встретиться в неевклидовой геометрии Лобачевского — Бойаи. В письме к математику и астроному Фридриху Вильгельму Бесселю (1784-1846) от 27 января 1829 г. Гаусс признавался, что вряд ли когда-нибудь опубликует свои открытия в области неевклидовой геометрии из опасения насмешек, или, как выразился Гаусс, криков беотийцев (в переносном смысле — невежд). Опасения Гаусса были не лишены оснований: не следует забывать о том, что, хотя небольшую группу математиков, упорно работавших над созданием неевклидовой геометрии, отделял от их цели всего лишь шаг, интеллектуальный мир в целом по-прежнему был убежден, что евклидова геометрия единственно возможная. Поэтому все, что мы знаем о работе Гаусса по неевклидовой геометрии, почерпнуто из его писем к друзьям, двух коротких сообщений, опубликованных в 1816 и 1822 гг. в журнале Göttingenische gelehrte Anzeigen, и нескольких заметок, датированных 1831 г., которые были обнаружены среди его бумаг после смерти.
Слава создателей неевклидовой геометрии по праву принадлежит двум другим математикам: Лобачевскому и Бойаи. В действительности их труды явились своего рода эпилогом в развитии идей, высказанных ранее другими учеными, но поскольку они опубликовали первые систематические изложения неевклидовой геометрии, именно они и признаны ее создателями. Русский математик Николай Иванович Лобачевский (1793-1856) закончил Казанский университет, профессором и ректором которого стал впоследствии (1827-1846). Начиная с 1825 г. он представил свои соображения по основаниям геометрии в многочисленных статьях и двух книгах. Янош Бойаи (1802-1860), сын известного венгерского математика Фаркаша Бойаи, был офицером австро-венгерской армии. Свою работу (объемом в 26 страниц) по неевклидовой геометрии под названием «Приложение, содержащее науку о пространстве, абсолютно истинную, не зависящую от истинности или ложности XI аксиомы Евклида, что a priori никогда решено быть не может, с прибавлением к случаю ложности геометрической квадратуры круга» Бойаи опубликовал в качестве приложения к первому тому сочинения своего отца «Опыт введения учащегося юношества в начала чистой математики» (Tentamen juventutem studiosam in elementa Matheoseos). Хотя эта книга вышла в 1832-1833 гг., т.е. после первых публикаций Лобачевского, Бойаи, по-видимому, разработал свои идеи по неевклидовой геометрии еще в 1825 г. и убедился в ее непротиворечивости.
Гаусс, Лобачевский и Бойаи поняли, что аксиома Евклида о параллельных не может быть доказана на основе девяти остальных аксиом евклидовой геометрии и что для обоснования последней необходима какая-то дополнительная аксиома. Так как аксиома о параллельных независима от остальных аксиом, представляется возможным (по крайней мере чисто логически) заменить ее противоположной аксиомой и попытаться вывести следствия из новой системы аксиом.
С чисто математической точки зрения содержание работ Гаусса, Лобачевского и Бойаи очень просто. Суть дела удобнее всего пояснить на примере геометрии Лобачевского, ибо все трое по существу сделали одно и то же. Отвергнув аксиому Евклида о параллельных, Лобачевский фактически принял такое же допущение, каким некогда воспользовался Саккери. Если дана прямая AB и точка P вне ее (рис. 34), то все прямые, проходящие через точку P, распадаются относительно прямой AB на два класса, а именно на класс прямых, пересекающихся с прямой AB и класс прямых, не пересекающихся с прямой AB. Точнее если точка P лежит на перпендикуляре к прямой AB на расстоянии a от нее, то существует острый угол A, такой, что все прямые, образующие с перпендикуляром PD угол меньшеA, пересекаются с прямой AB, а прямые, образующие с PD угол большеA, не пересекаются с прямой AB. Две прямые p и q, образующие с перпендикуляром PD угол A, называются параллельными, а сам угол A называется углом параллельности. Прямые, проходящие через точку P и не пересекающиеся с прямой AB, но отличные от параллельных p и q, называются расходящимися с прямой AB или сверхпараллельными ей (с точки зрения Евклида это прямые, параллельные прямой AB). В этом смысле в геометрии Лобачевского существует бесконечно много параллельных, проходящих через точку P.
Рис. 34.
Далее Лобачевский доказывает несколько ключевых теорем. Если A = π/2, то получается аксиома Евклида о параллельных. Если угол A — острый, то при a, стремящемся к нулю,A возрастает до π/2, а при неограниченном возрастании a убывает до нуля. Сумма углов треугольника в геометрии Лобачевского всегда меньше 180° и стремится к 180° с уменьшением площади треугольника. Два подобных треугольника в геометрии Лобачевского непременно конгруэнтны.
Но, пожалуй, самое главное состоит в том, что неевклидова геометрия пригодна для описания свойств физического пространства ничуть не в меньшей мере, чем евклидова геометрия. Необходимость евклидовой геометрии как геометрии физического пространства ниоткуда не следует, ее физическая истинность не может быть гарантирована на основе априорных соображений. К пониманию этого немаловажного обстоятельства, не требующему никаких чисто математических доказательств, ибо все уже было сделано раньше, первым пришел Гаусс.
Но не так-то легко расстаться с накопленным ранее богатством. По-новому взглянув на природу истинного в математике, Гаусс увидел ту опору, за которую можно ухватиться. В письме Генриху В.М. Ольберсу (1758-1840) от 28 апреля 1817 г. Гаусс сообщал:
Я прихожу все более к убеждению, что необходимость нашей геометрии не может быть доказана, по крайней мере человеческим рассудком и для человеческого рассудка. Может быть, в другой жизни мы придем к другим взглядам на природу пространства, которые нам теперь недоступны. До тех пор геометрию приходится ставить не в один ранг с арифметикой, существующей чисто и a priori, а скорее с механикой.
Гаусс в отличие от Канта не считал законы механики априорными истинами. Он, как и многие другие, разделял взгляды Галилея, считавшего, что законы механики выводятся из опыта. Гаусс утверждал, что истина лежит в арифметике и, следовательно, в алгебре и анализе, построенных на арифметике, ибо арифметические истины интуитивно ясны нашему разуму.
Лобачевский также размышлял над применимостью своей геометрии к физическому пространству и доказал, что она применима к очень большим геометрическим фигурам. Таким образом, к 30-м годам XIX в. неевклидова геометрия не только получила признание, но и ее применимость к реальному физическому пространству была обоснована.