Математика. Поиск истины. — страница 45 из 69

Даже характер траектории, описываемой телом, зависит от наблюдателя. Рассмотрим такой простой пример. Пассажиру поезда, движущегося равномерно и прямолинейно, будет казаться, что камень, выпущенный из рук, падает по прямой, а с точки зрения наблюдателя на земле тот же камень описывает параболическую траекторию. Иначе говоря, вид траектории изменяется в зависимости от положения наблюдателя.

Два наблюдателя, движущиеся друг относительно друга равномерно и прямолинейно, разойдутся во мнениях не только при измерениях расстояний, но и при измерениях продолжительности промежутков времени. В противном случае наблюдатели должны были бы прийти к согласию относительно событий, отмечающих начало и конец временного интервала.

Но выводы, которые извлек из своих постулатов Эйнштейн, далеко не исчерпываются этим. Если один наблюдатель неподвижен, а другой движется относительно него с постоянной скоростью v в заданном направлении (как, например, наблюдатель в поезде), то длина отрезка в движущейся вместе со вторым наблюдателем системе отсчета по измерениям неподвижного наблюдателя окажется короче, чем по измерениям движущегося наблюдателя, и наоборот. Что касается времени, то неподвижному наблюдателю кажется, что наблюдатель, движущийся, например, относительно Земли, перемещается медленнее. Сигара движущегося наблюдателя кажется неподвижному наблюдателю короче, чем его собственная. Иначе говоря, часы в системе отсчета S' покоятся в этой системе. При наблюдении из другой системы отсчета S часы в системе отсчета S' замедляют свой ход на (1 − 1/β) за секунду, где β = √(1 − v2/c2). Верно и обратное. В общем случае соотношение между двумя системами отсчета задается преобразованием Лоренца. Кроме того, невозможно отделить измерение пространства от измерения времени (если не считать наблюдателя, производящего измерения в своей собственной системе отсчета), подобно тому как мы не можем отделить одновременно для всех наблюдателей горизонтальное направление от вертикального.

Следует подчеркнуть, что, говоря о различии в результатах измерений длины, производимых различными наблюдателями, мы отнюдь не имеем в виду эффект влияния расстояния на их зрительное восприятие или какие-либо оптические иллюзии. Равным образом, говоря о расхождении в оценках наблюдателями продолжительности временных интервалов, мы никак не связываем это с психологическими или эмоциональными эффектами.

Рассмотрим численный пример. Наблюдателю на Земле космический корабль, летящий с околосветовой скоростью 270 000 км/с относительно Земли, покажется вдвое короче, чем наблюдателю на борту корабля. Часы, находящиеся на борту этого космического корабля, будут казаться земному наблюдателю идущими вдвое медленнее, чем наблюдателю на борту космического корабля. К аналогичным заключениям наблюдатель, находящийся на борту космического корабля, придет относительно размеров объектов и продолжительности событий на Земле. Более того, каждый набор измерений правилен, но в своем собственном пространстве и времени.

В концепции локальной длины и локального времени заключается одно из принципиально новых положений специальной теории относительности. Их необычность не должна скрывать от нас то, что они гораздо лучше согласуются с экспериментом и приведенными выше рассуждениями по поводу одновременности событий, чем ньютоновские понятия абсолютного пространства и времени. Впрочем, если бы дело обстояло иначе, то, какими бы ни были понятия специальной теории относительности, относительными или абсолютными, никто из ученых не стал бы их придерживаться. Соотношения между длиной и продолжительностью временного интервала, измеряемыми одним наблюдателем, движущимся относительно другого равномерно и прямолинейно со скоростью v, могут быть выведены из преобразования Лоренца.

Еще одно следствие из постулатов специальной теории относительности касается сложения скоростей. Предположим, что в стоячей воде лодка движется со скоростью 6 км/ч, а скорость течения равна 2 км/ч. Можно ли утверждать, что вниз по течению лодка будет плыть со скоростью 8 км/ч? Нет, специальная теория относительности приводит к иному ответу. Скорость V, при сложении скоростей u и v определяется по формуле

Небезынтересно отметить одно следствие из этой формулы: если u = c, то V = c.

Но, возможно, самое необычное следствие специальной теории относительности касается массы движущегося тела; оно гласит, что масса любого объекта увеличивается со скоростью. Зависимость массы от скорости Эйнштейн рассмотрел в четвертой из своих статей, опубликованных в 1905 г. Если m — масса тела, покоящегося относительно наблюдателя, а M — масса того же тела, движущегося со скоростью v относительно наблюдателя, то они связаны зависимостью (1):

Возможно ли подобное? Ведь когда скорость тела возрастает, число молекул в нем отнюдь не увеличивается. Ответ на этот вопрос поистине удивителен. Можно показать, что с вполне удовлетворительной точностью приращение массы тела равно кинетической энергии его массы покоя, деленной на c2. Грубо говоря, приращение массы тела эквивалентно его кинетической энергии. Можно сказать, что движущаяся масса ведет себя так, как будто она увеличивается, но физически это увеличение сводится к энергии тела.

Хотя взаимосвязь массы и энергии на первый взгляд может показаться невероятной, на самом деле мы сталкиваемся с этим в повседневной жизни. Рассмотрим сначала явление превращения массы в энергию. Так, когда мы пользуемся карманным фонариком, мы по существу превращаем массу вещества, заключенного в батарейках, в световое излучение, обладающее определенной энергией. Свет может привести во вращение крыльчатку игрушечного радиометра. Ясно, что световое излучение обладает массой, которая, ударяясь о крылышки радиометра, заставляет их вращаться. Мы сжигаем мазут в отопительных системах, сжигаем бензин в моторах автомобилей, чтобы привести их в действие. И в том и в другом случае мы превращаем массу в энергию, как и сжигая дрова для обогрева своего жилища, ибо тепло — одна из форм энергии. Солнечный свет является основным источником энергии на Земле. Растения превращают его в химическую энергию. В процессе фотосинтеза, происходящего в листьях зеленых растений, энергия солнечного света поглощается и используется для превращения воды, диоксида углерода (углекислого газа) и минералов в органические соединения, богатые кислородом и энергией.

Эйнштейн высказал предположение, что увеличение массы можно было бы наблюдать на частицах, испускаемых при радиоактивном распаде, например на β-частицах (электронах), если разогнать их до высоких скоростей. Это предсказание Эйнштейна получило экспериментальное подтверждение. Нечто похожее происходит, когда мы нагреваем массу, тем самым подводя к ней энергию: масса увеличивается.

К счастью или несчастью, существует и обратный процесс. Частица вещества теряет часть своей массы, отдав соответствующее количество энергии. Частицу можно замедлить, вынуждая ее расходовать массу и тем самым энергию. К поистине трагическим последствиям может привести огромное количество энергии, выделяющейся в виде излучения при делении атомного ядра или при термоядерном синтезе (в первом случае суммарная масса осколков деления меньше массы исходного ядра, во втором — масса продуктов реакции меньше массы исходных частиц). В превращении образовавшегося «дефекта массы» в энергию и состоит принцип действия атомной и водородной бомб.

Эквивалентность массы и энергии можно понять, если задуматься над тем, как ведет себя масса. Самое фундаментальное свойство массы — ее инерция, способность сопротивляться изменению скорости. Чтобы увеличить скорость тела, необходимо сообщить ему энергию. Чем выше скорость, тем больше энергии требуется для того, чтобы ее изменить. При увеличении скорости тело [по формуле (1)] приобретает также дополнительную инерцию, или массу. Путем несложных вычислений нетрудно показать, что

M = m + 1/2∙m∙(v2/c2). (2)

Равенство (2) не точное, а приближенное. Второй член в правой его части есть кинетическая энергия, деленная на c2. Таким образом, добавкой к массе покоя служит кинетическая энергия. Совершенно несущественно, как это выразить: масса возрастает со скоростью; энергия обладает массой или эквивалентна массе; энергия приводит к увеличению массы и т.д. К подобному же результату приводит увеличение энергии любого вида, не обязательно кинетической. Меняется лишь инерция вещества, более богатого энергией.

Однако Эйнштейн пошел гораздо дальше, показав, что когда тело покоится, его энергия E0 численно равна mc2, где m — масса покоя тела. Затем Эйнштейн принял соотношение (1) за формулу, определяющую массу тела, движущегося со скоростью v. В действительности, обобщив и расширив свои рассуждения, он показал, что соотношение E = mc2 остается в силе и в том случае, когда E означает полную энергию массы m, а не только массы покоя (в наших обозначениях E = Mc2). Эйнштейн также показал, что излучению с энергией E следует приписать инерцию, которой обладает масса, эквивалентная E/c2. Эти заключения не следовали непосредственно из специальной теории относительности, но находились в согласии с ней. В книге «Сущность теории относительности» Эйнштейн сформулировал итог своих рассуждений следующим способом: «Таким образом, масса и энергия сходны по существу — это только различные выражения одного и того же. Масса тела не постоянна; она меняется вместе с его энергией» ([7], т. 2, с. 87).