огут оказать серьезное воздействие на портфель. Важно понимать, что портфель может быть больше, чем сумма его частей (если корреляции его составляющих частей достаточно низки). Также возможно, что портфель будет меньше, чем сумма его частей (если корреляции слишком высоки). Рассмотрим снова игру с броском монеты, где вы выигрываете 2 доллара, когда выпадает лицевая сторона, и проигрываете 1 доллар, когда выпадает обратная сторона. Каждый бросок имеет математическое ожидание (арифметическое) пятьдесят центов. Оптимальное f составляет 0,25, то есть надо ставить 1 доллар на каждые 4 доллара на счете, а среднее геометрическое составляет 1,0607. Теперь рассмотрим вторую игру, где сумма, которую вы можете выиграть при броске монеты, составляет 0,90 долларов, а сумма, которую вы можете проиграть, — 1,10 долларов. Такая игра имеет отрицательное математическое ожидание -0,10 доллара, таким образом, здесь нет оптимального f и соответственно нет и среднего геометрического. Посмотрим, что произойдет, когда мы будем играть в обе игры одновременно. Если корреляция этих игр равна 1,0 (то есть мы выигрываем при выпадении лицевой стороны, а монеты всегда падают либо на лицевые стороны, либо на обратные стороны), тогда результаты были бы следующими: мы выигрываем 2,90 доллара при выпадении лицевой стороны или проигрываем 2,10 доллара при выпадении обратной. Такая игра имеет математическое ожидание 0,40 доллара, оптимальное f= 0,14 и среднее геометрическое 1,013. Очевидно, что это худший подход к торговле с положительным математическим ожиданием. Теперь допустим, что игры имеют отрицательную корреляцию. То есть, когда монета в игре с положительным математическим ожиданием выпадает на лицевую сторону, мы теряем 1,10 доллара в игре с отрицательным ожиданием, и наоборот. Таким образом, результатом двух игр будет выигрыш 0,90 доллара в одном случае и проигрыш -0,10 доллара в другом случае. Математическое ожидание все еще 0,40 доллара, однако оптимальное f= 0,44, что дает среднее геометрическое 1,67. Вспомните, что среднее геометрическое является фактором роста вашего счета в среднем за одну игру.. Это означает, что в такой игре в среднем можно ожидать выигрыша в 10 раз больше, чем в уже рассмотренной одиночной игре с положительным математическим ожиданием. Однако этот результат получен с помощью игры с положительным математическим ожиданием и ее комбинирования с игрой с отрицательным ожиданием. Причина большой разницы в результатах возникает из-за отрицательной корреляции между двумя рыночными системами. Мы рассмотрели пример, когда портфель больше, чем сумма его частей.
Важно помнить, что исторически ваш проигрыш может быть такой же большой, как и процент f (в смысле возможного уменьшения баланса). В действительности вам следует ожидать, что в будущем он будет выше, чем данное значение. Это означает, что комбинация двух рыночных систем, даже если они имеют отрицательную корреляцию, может привести к уменьшению баланса на 44%. Это больше, чем в системе с положительным математическим ожиданием, в которой оптимальное f= 0,25, и поэтому максимальный исторический проигрыш уменьшит баланс только на 25%. Мораль такова: диверсификация, если она произведена правильно, является методом, который повышает прибыли. Она не обязательно уменьшает проигрыши худшего случая, что абсолютно противоречит популярному представлению. Диверсификация смягчает многие мелкие проигрыши, но она не уменьшает проигрыши худшего случая. При оптимальном f максимальные проигрыши могут быть существенно больше, чем думают многие. Поэтому, даже если вы хорошо диверсифицировали портфель, следует быть готовым к значительным уменьшениям баланса. Однако давайте вернемся и посмотрим на результаты, когда коэффициент корреляции между двумя играми равен 0. В такой ситуации, какими бы ни были результаты одного броска, они не влияют на результаты другого броска. Таким образом, есть четыре возможных результата:
Игра 1 | Игра2 | Итого | |||
Результат | Сумма | Результат | Сумма | Результат | Сумма |
Выигрыш | $2,0 | Выигрыш | $9,0 | Выигрыш | $2,90 |
Выигрыш | $2,0 | Проигрыш | -$1,10 | Выигрыш | $0,90 |
Проигрыш | -$1,00 | Выигрыш | $0,90 | Проигрыш | -$0,10 |
Проигрыш | -$1,00 | Проигрыш | -$1,10 | Проигрыш | -$2,10 |
Математическое ожидание равно:
МО = 2,9 * 0,25 + 0,9 * 0,25 - 0,1 * 0,25 - 2,1 * 0,25 = 0,725 + 0,225 - 0,025 - 0,525 =0,4
Математическое ожидание равно 0,40 доллара. Оптимальное f в этой последовательности составляет 0,26, или 1 ставка на каждые 8,08 доллара на балансе счета (так как наибольший проигрыш здесь равен -2,10 доллара). Таким образом, максимальный исторический проигрыш может быть 26% (примерно такой же, что и в простой игре с положительным математическим ожиданием). Однако в этом примере происходит сглаживание уменьшении баланса. Если бы мы просто рассматривали игру с положительным ожиданием, то третья последовательность принесла бы нам максимальный проигрыш. Так как мы комбинируем две системы, третья последовательность более ровная. Это единственный плюс. Среднее
геометрическое здесь равно 1,025, то есть скорость роста в два раза меньше, чем при простой игре с положительным математическим ожиданием. Мы делаем 4 ставки (когда могли бы сделать только 2 ставки в простой игре с положительным ожиданием), а больше не зарабатываем:
1,0607^2= 1,12508449
1,025^4= 1,103812891
Очевидно, что при диверсификации вы должны использовать такие рыночные системы, которые имеют самую низкую корреляцию прибылей друг к другу, и желательно отрицательную корреляцию. Вы должны понимать, что уменьшение баланса худшего случая едва ли будет смягчено диверсификацией, хотя вы сможете смягчать многие более слабые уменьшения баланса. Наибольшая польза диверсификации состоит в улучшении среднего геометрического. Метод поиска оптимального портфеля путем рассмотрения чистых дневных HPR упраздняет необходимость смотреть за тем, сколько сделок в каждой рыночной системе произошло. Использование этого метода позволит вам наблюдать только за средним геометрическим независимо от частоты сделок. Таким образом, среднее геометрическое становится единственной статистической оценкой того, насколько прибыльным является портфель. Главная цель диверсификации — это получение наивысшего среднего геометрического.
Как разброс результатов затрагивает геометрический рост
После того как мы признали тот факт, что, хотим мы того или нет, сознательно или нет, количество для торговли определяется по уровню баланса на счете, можно рассматривать HPR, а не денежные суммы. Таким образом, мы придадим управлению деньгами определенность и точность. Мы сможем проверить наши стратегии управления деньгами, составить правила и сделать определенные выводы. Посмотрим, как связан геометрический рост и разброс результатов (HPR).
В этой дискуссии мы для простоты будем использовать пример азартной игры. Рассмотрим две системы: систему А, которая выигрывает 10% времени и имеет отношение выигрыш/проигрыш 28 к 1, и систему В, которая выигрывает 70% времени и имеет отношение выигрыш/проигрыш 1,9 к 1. Наше математическое ожидание на единицу ставки для А равно 1,9, а для В равно 0,4. Поэтому мы можем сказать, что для каждой единицы ставки система А выиграет, в среднем, в 4,75 раз больше, чем система В. Но давайте рассмотрим торговлю фиксированной долей. Мы можем найти оптимальные f, разделив математическое ожидание на отношение выигрыш/проигрыш. Это даст нам оптимальное f = 0,0678 для А и 0,4 для В. Средние геометрические для каждой системы при соответствующих значениях оптимальных f составят:
А= 1,044176755
В= 1,0857629
Как видите, система В, несмотря на то что ее математическое ожидание примерно в четыре раза меньше, чем системы А, приносит почти в два раза больше за ставку (доходность 8,57629% за ставку, когда вы реинвестируете с оптимальным f), чем система А (которая приносит 4,4176755% за ставку, когда вы реинвестируете с оптимальным f).
Система | % Выигрышей | Выигрыш: Проигрыш | МО | f | Среднее геометрическое |
А | 10 | 28: 1 | 1,9 | 0,0678 | 1,0441768 |
В | 70 | 1,9:1 | 0,4 | 0,4 | 1,0857629 |
Проигрыш 50% по балансу потребует 100% прибыли для возмещения; 1,044177 в степени Х будет равно 2,0, когда Х приблизительно равно 16,5, то есть для возмещения 50% проигрыша для системы А потребуется более 16 сделок. Сравним с системой В, где 1,0857629 в степени Х будет равно 2,0, когда Х приблизительно равно 9, то есть для системы В потребуется 9 сделок для возмещения 50% проигрыша.
В чем здесь дело? Не потому ли все это происходит, что система В имеет процент выигрышных сделок выше? Истинная причина, по которой В функционирует лучше А, кроется в разбросе результатов и его влиянии на функцию роста. Большинство трейдеров ошибочно считают, что функция роста TWR задается следующим образом:
где R = процентная ставка за период (например, 7% = 0,07);
N = количество периодов.
Так как 1 + R то же, что и HPR, большинство ошибочно полагает, что функция роста[3] TWR равна:
(1.18) TWR = HPR ^N
Эта функция верна только тогда, когда прибыль (то есть HPR) постоянна, чего в торговле не бывает. Реальная функция роста в торговле (или любой другой среде, где HPR не является постоянной) — это произведение всех HPR. Допустим, мы торгуем кофе, наше оптимальное f составляет 1 контракт на каждую 21 000 долларов на балансе счета и прошло 2 сделки, одна из которых принесла убыток 210 долларов, а другая выигрыш 210 долларов. В этом примере HPR равны 0,99 и 1,01 соответственно. Таким образом, TWR равно: