1n() = функция натурального логарифма.
Вернемся к нашему примеру с броском монеты 2:1. При оптимальном f среднее геометрическое равно 1,06066, а при половине f оно составляет 1,04582499. Теперь давайте рассчитаем ожидаемое количество сделок, необходимое для удвоения нашего счета (Цель = 2). При полном f:
N=ln(2)/ln( 1,06066) =0,6931471/0,05889134 =11,76993
Таким образом, в игре с броском монеты 2:1 при полном f следует ожидать 11,76993 сделок для удвоения нашего счета. При половине f получаем:
N=ln(2)/ln( 1,04582499) =0,6931471/0,04480602 = 15,46996
Таким образом, при половине f мы ожидаем, что потребуется 15,46996 сделок для удвоения счета. Другими словами, чтобы достичь цели при торговле на уровне f/ /2, от нас понадобится на 31,44% сделок больше. Ну что же, это звучит не так уж плохо. Проявляя терпение для достижения поставленной цели, мы потратим времени на 31,44% больше, но сократим худший проигрыш и дисперсию наполовину. Согласитесь, половина — это довольно много. Чем меньшую часть оптимального f вы будете использовать, тем более гладкую кривую счета получите, и тем меньшее время вы будете в проигрыше. Теперь посмотрим на эту ситуацию с другой стороны. Допустим, вы открываете два счета: один для торговли с полным f и один для торговли с половиной f. После 12 игр ваш счет с полным f увеличится в 2,02728259 в 12 раза. После 12 сделок (с половиной f) он вырастет в 1,712017427 (1,04582499 ^ 12) раза. С половиной f первоначальный счет увеличится в 2,048067384 (1,04582499 ^ 16) раза при 16 сделках. Поэтому, торгуя на одну треть дольше, вы достигнете той же цели, что и при полном оптимальном f, но при активности, меньшей наполовину. Однако к 16 сделке счет с полным f будет в 2,565777865 (1,06066 ^ 16) раза больше вашего первоначального счета. Полное f продолжает увеличивать счет. К 100 сделке ваш счет с половиной f увеличится в 88,28796546 раз, но полное f увеличит его в 361,093016 раз!
Единственный минус торговли с дробным f— это большее время, необходимое для достижения определенной цели. Все дело во времени. Мы можем вложить деньги в казначейские обязательства и достичь-таки заданной цели через определенное время с минимальными промежуточными падениями баланса и дисперсией! Время — это суть проблемы.
Сравнение торговых систем
Мы увидели, что две торговые системы можно сравнивать на основе их средних геометрических при соответствующих оптимальных f. Далее, мы можем сравнивать системы, основываясь на том, насколько высокими являются их оптимальные f, поскольку более высокие оптимальные f соответствуют более рискованным системам. Это связано с тем, что исторический проигрыш может понизить счет, по крайней мере, на процент f. Поэтому существуют две основные величины для сравнения систем: среднее геометрическое при оптимальном f, где более высокое среднее геометрическое предпочтительнее, и само оптимальное f, где более низкое оптимальное f лучше. Таким образом, вместо одной величины для измерения эффективности системы мы получаем две; эффективность должна измеряться в двухмерном пространстве, где одна ось является средним геометрическим, а другая — значением f. Чем выше среднее геометрическое при оптимальном f, тем лучше система. Также чем ниже оптимальное f, тем лучше система.
Среднее геометрическое ничего не скажет нам о проигрыше. Высокое среднее геометрическое не означает, что проигрыш системы большой (или, наоборот, незначительный). Среднее геометрическое имеет отношение только к прибыли. Оптимальное f является мерой минимального ожидаемого исторического проигрыша как процентное понижение баланса. Более высокое оптимальное f не говорит о более высоком (или низком) доходе. Мы можем также использовать эти положения для сравнения определенной системы при дробном значении f с другой системой при полном значении оптимального f. При рассмотрении систем вам следует учитывать, насколько высоки средние геометрические и каковы оптимальные f. Например, у нас есть система А, которая имеет среднее геометрическое 1,05 и оптимальное f= 0,8. Также у нас есть система В, которая имеет среднее геометрическое 1,025 и оптимальное f=0,4. Система А при половине уровня f будет иметь то же минимальное историческое падение баланса худшего случая (проигрыш) в 40%, как и система В при полном f, но среднее геометрическое системы А при половине f вce равно будет выше, чем среднее геометрическое системы В при полном значении f. Поэтому система А лучше системы В. «Минутку, — можете возразить вы, — разве не является самым важным то обстоятельство, что среднее геометрическое больше 1, и системе необходимо быть только минимально прибыльной, чтобы (посредством грамотного управления деньгами) заработать желаемую сумму!» Так оно и есть. Скорость, с которой вы зарабатываете деньги, является функцией среднего геометрического на уровне используемого f. Ожидаемая дисперсия зависит от того, насколько большое f вы используете. Вы, безусловно, должны иметь систему с оптимальным f и со средним геометрическим, большим 1 (то есть с положительным математическим ожиданием). С такой системой вы можете заработать практически любую сумму через соответствующее количество сделок. Скорость роста (количество сделок, необходимое для достижения определенной цели) зависит от среднего геометрического при используемом значении f. Дисперсия на пути к этой цели также является функцией используемого значения f. Хотя важность среднего геометрического и применяемого f вторична по сравнению с тем фактом, что вы должны иметь положительное математическое ожидание, эти величины действительно полезны при сравнении двух систем или методов, которые имеют положительное математическое ожидание и равную уверенность в их работе в будущем.
Слишком большая чувствительность к величине наибольшего проигрыша
Недостаток подхода, основанного на оптимальном f, заключается в том, что f слишком зависит от величины наибольшего проигрыша, что является серьезной проблемой для многих трейдеров, и они доказывают, что количество контрактов, которые вы открываете сегодня, не должно быть функцией одной неудачной сделки в прошлом.
Для устранения этой сверхчувствительности к наибольшему проигрышу были разработаны разнообразные алгоритмы. Многие из этих алгоритмов заключаются в изменении наибольшего проигрыша в большую или меньшую сторону, чтобы сделать наибольший проигрыш функцией текущей волатильности рынка. Эта связь, как утверждают некоторые, квадратичная, то есть абсолютное значение наибольшего проигрыша, по всей видимости, увеличивается с большей скоростью, чем волатильность. Волатильность чаще всего определяется как средний дневной диапазон цен за последние несколько недель или как среднее абсолютное дневное изменение за последние несколько недель. Однако об этой зависимости нельзя говорить с полной уверенностью. То, что волатильность сегодня составляет X, не означает, что наш наибольший проигрыш будет Х ^ Y. Можно говорить лишь о том, что он обычно где-то около Х ^ Y. Если бы мы могли заранее определить сегодняшний наибольший проигрыш, то, безусловно, могли бы лучше использовать методы управления деньгами[5]. Это тот самый случай, когда мы должны рассмотреть сценарий худшего случая и отталкиваться от него. Проблема состоит в том, что мы не знаем точно, каким будет сегодня наибольший проигрыш. Алгоритмы, которые могут спрогнозировать это, не очень эффективны, так как они часто дают ошибочные результаты.
Предположим, в течение торгового дня произошло событие, вызвавшее на рынке шок, и до этого шока волатильность была достаточно низкой. Затем рынок находился не на вашей стороне несколько следующих дней. Или, допустим, на следующий день рынок открылся с огромным разрывом не в вашу пользу. Эти события так же стары, как сама торговля товарами и акциями. Они могут произойти и происходят, и о них не всегда предупреждает заранее повышающаяся волатильность. Таким образом, лучше не «сокращать» ваш наибольший исторический проигрыш для отражения текущего рынка с низкой волатильностью. Более того, есть реальная возможность испытать в будущем проигрыш больший, чем наибольший исторический проигрыш. Наибольший проигрыш, который вы получили в прошлом, может оказаться наибольшим проигрышем, который вы испытаете сегодня, и не зависеть от текущей волатильности[6]. Проблема состоит в том, что с эмпирической точки зрения f, оптимальное в прошлом, является функцией наибольшего проигрыша в прошлом. С этим ничего не поделаешь. Однако мы увидим, когда перейдем к параметрическим методам, что можно предусмотреть больший проигрыш в будущем. При этом мы будем готовы к появлению почти неизбежного большого проигрыша. Вместо подгонки наибольшего проигрыша к текущей ситуации на рынке, чтобы эмпирическое оптимальное f отражало нынешнюю ситуацию, лучше изучить параметрические методы. Следующий метод является возможным решением данной проблемы и может применяться вне зависимости от того, рассчитываем мы оптимальное f эмпирически или параметрически.
Приведение оптимального f к текущим ценам
Оптимальное f даст наибольший геометрический рост при большом количестве сделок. Это математический факт. Рассмотрим гипотетический поток сделок:
Из этого потока сделок мы найдем, что оптимальное f= 0,17 (ставка 1 единицы на каждые 29,41 доллара на балансе). Такой подход при данном потоке даст нам наибольший рост счета.
Представьте себе, что этот поток выражает прибыли и убытки при торговле одной акцией. Оптимально следует покупать одну акцию на каждые 29,41 доллара на балансе счета, несмотря на текущую цену акции. Предположим, что текущая цена акции равна 100 долларам. Более того, допустим, что при первых двух сделках акция стоила 20 долларов, а при двух последних сделках — 50 долларов.
Для наших первых двух сделок, которые произошли при цене акции в 20 долларов, выигрыш в 2 доллара соответствует выигрышу в 10%, а проигрыш 3 долларов соответствует проигрышу в 15%. Для двух последних сделок при цене акции 50 долларов выигрыш 10 долларов соответствует выигрышу в 20%, а проигрыш в 5 долларов соответствует проигрышу в 10%.