Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров — страница 34 из 66

KURT = переменная, задающая эксцесс,

четвертый момент распределения;

SCALE = переменная, задающая ширину, второй момент распределения;

SKEW= переменная, задающая асимметрию, третий момент распределения;

sign() = функция знака, число 1 или -1. Знак Х рассчитывается как X/ ABS(X) для X, не равного 0. Если Х равно нулю, знак будет счи­таться положительным;

Рисунки 4-8 и 4-9 показывают действие переменной асимметрии на распре­деление. Отметим несколько важных особенностей параметров LOC, SCALE, SKEW и KURT. За исключением переменной LOC (которая выражена как число стандартных значений для смещения распределения), другие три


Рисунок4-6LOC=0, SCALE =0,5, SKEW = 0, KURT=2

Рисунок4-7LOC=0, SCALE = 2, SKEW = 0, KURT=2,

Рисунок4-8LOC=0, SCALE =1, SKEW =-0,5, KURT = 2.

Рисунок 4-9 LOG = 0, SCALE = 1, SKEW = +0,5, KURT = 2.


переменные являются безразмерными, то есть их значения являются числами, ко­торые характеризуют форму распределения и относятся только к этому рас­пределению. Значения параметров будут другими, если вы примените стандартные измери­тельные методы, детально описанные в разделе «Величины, описывающие рас­пределения» главы 3. Например, если вы определите один из коэффициентов асимметрии Пирсона на наборе данных, он будет отличаться от значения пере­менной SKEW для распределений, рассматриваемых здесь. Значения четырех пе­ременных уникальны для рассматриваемого распределения и имеют смысл толь­ко в данном контексте. Крайне важен интервал возможных значений этих переменных. Переменная SCALE всегда должна быть положительной, кроме того, она не ограничена сверху. То же самое верно для переменной KURT. На практике, однако, лучше использовать значения от 0,5 до 3, в крайнем случае, от 0,05 до 5. Вы можете ис­пользовать значения и за пределами этих крайних точек при условии, что они больше нуля.

Переменная LOC может быть положительной, отрицательной или нулем. Па­раметр SKEW должен быть больше или равен -1, и меньше или равен +1. Когда SKEW равен +1, вся правая сторона распределения (справа от пика) равна пику. Когда SKEW равен -1, пику равна вся левая сторона распределения. Интервалы значений переменных в общем виде таковы:

(4.08) - бесконечность < LOC < + бесконечность

(4.09) SCALE > 0

(4.10) -1<=SKEW<=+1

(4.11) KURT > О

Рисунки с 4-2 по 4-9 показывают, как легко изменяется распределение. Мы мо­жем подогнать эти четыре параметра таким образом, чтобы получившееся в ре­зультате распределение было похоже на любое другое распределение.

Подгонка параметров распределения

Как и в процедуре, описанной в главе 3, по поиску оптимального f при нор­мальном распределении, мы должны преобразовать необработанные торго­вые данные в стандартные единицы. Сначала мы вычтем среднее из каждой сделки, а затем разделим полученное значение на стандартное отклонение. Далее мы будем работать с данными в стандартных единицах. После того как

мы приведем сделки к стандартным значениям, можно отсортировать их в порядке возрастания. На основе полученных данных мы сможем провести тест К-С. Нашей целью является поиск таких значений LOC, SCALE, SKEW и KURT, которые наилучшим образом подходят для фактического распределения сделок. Для определения «наилучшего приближения» мы полагаемся на тест К-С. Рас­считаем значения параметров, используя «метод грубой силы двадцатого века». Мы просчитаем каждую комбинацию для KURT от 3 до 0,5 с шагом -0,1 (мы мо­жем также взять интервал от 0,5 до 3 с шагом 0,1, так как направление не имеет значения). Далее просчитаем каждую комбинацию для SCALE от 3 до 0,5 с шагом -0,1. Пока оставим LOC и SKEW равными 0. Таким образом, нам надо обработать следующие комбинации:


LOCSCALESKEWKURT
0303
о302,9
о302,8
о302,7
о302,6
о302,5
о302,4
о302,3
о302,2
о302,1
о302
о301,9
****
****
****
о2,903
о2,902,9
****
****
****
о0,500,6
о0,500,5

Для каждой комбинации проведем тест К-С. Комбинацию, которая даст наи­меньшую статистику К-С, будем считать оптимальной для параметров SKALE и KURT (на данный момент). Чтобы провести тест К-С для каждой комбинации, нам необходимо как фактическое распределение, так и теоретическое распределение (определяе­мое параметрами тестируемого характеристического распределения). Мы уже знаем, как создать функцию распределения вероятности X/N, где N яв­ляется общим числом сделок, а Х является рангом (от 1 до N) данной сделки. Теперь нам надо рассчитать ФРВ для теоретического распределения при данных значениях параметров LOC, SCALE, SKEW и KURT. У нас есть характеристическая функция регулируемого распределения, она за­дается уравнением (4.06). Чтобы получить ФРВ из характеристической функции, необходимо найти интеграл характеристической функции. Мы обозначаем ин­теграл, т.е. площадь под кривой характеристической функции в точке X, как N(X). Таким образом, так как уравнение (4.06) дает первую производную интеграла, мы обозначим уравнение (4.06) как N'(X). В большинстве случаев вы не сможете вывести интеграл функции, даже если вы опытный математик. Поэтому вместо интегрирования функции (4.06) мы будем использовать другой метод. Этот метод потребует больших усилий, но он применим к любой функции.

Вероятность для любой точки на графике характеристической функции можно оценить, если распределение представить себе как последователь­ность узких прямоугольников. Тогда для любого данного прямоугольника в распределении вы можете рассчитать вероятность, ассоциированную с этим прямоугольником, как отношение суммы площадей всех прямоугольников слева от вашего прямоугольника (включая площадь вашего прямоугольника) к сумме площадей всех прямоугольников в распределении. Чем больше пря­моугольников вы используете, тем более точными будут полученные вероят­ности. Если бы вы использовали бесконечное число прямоугольников, то ваш расчет был бы точным. Рассмотрим процедуру поиска площадей под кривой характеристического распределения на примере. Допустим, мы хотим найти вероятности, ассоцииро­ванные с каждым отрезком длиной 0,1 в интервале от -3 до +3 сигма. Отметьте, что в таблице (с. 183) рассмотрен интервал от -5 до +5 сигма. Дело в том, что луч­ше выйти на 2 сигмы за ограничительные параметры (-3 и +3 сигма в нашем слу­чае), чтобы получить более точные результаты. Отметьте, что Х — это число стандартных единиц, на которое мы смещены от среднего значения. Далее идут значения четырех параметров. Следующий стол­бец — это столбец N'(X), который отражает высоту кривой в точке Х при этих зна­чениях параметров. N'(X) рассчитывается из уравнения (4.06). Воспользуемся уравнением (4.06). Допустим, нам надо рассчитать N'(X) для Х= -3 со значениями параметров 0,02, 2,76, 0 и 1,78 для LOC, SCALE, SKEW и KURT соответственно. Сначала рассчитаем показатель асимметрии для уравне­ния (4.06). Формула для расчета С задается уравнением (4.07):


ХLOGSCALESKEWKURTN'(X) Ур. (4.06)Накопленная суммаN(X)
-5,00,022,7601,780,00920267410,00920267410,000388
-4,90,022,7601,780,00953505190,0187377260,001178
-4,80,022,7601,780,00988651170,02862423770,001997
-4,70,022,7601,780,010258570,03888280770,002847
-4,60,022,7601,780,01065289880,04953570650,003729
-4,50,022,7601,780,01107134490,06060705140,004645
-4,40,022,7601,780,01151595240,07212300380,005598
-4,30,022,7601,780,01198898870,08411199250,006590
-4,20,022,7601,780,01249297480,09660496730,007622
-4,10,022,7601,780,01303072030,10963568760,008699
-4,00,022,7601,780,01360536390,12324105150,009823
-3,90,022,7601,780,01422042090,13746147240,010996
-3,80,022,7601,780,01487983980,15234131220,012224
-3,7