Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров — страница 37 из 66

== 0,0835529 (это означает, что в своей наихудшей точке два распределения удалены на 8,35529%) при уровне значимости 7,8384%. Рисунок 4-10 показывает функцию распределения для тех значений параметров, которые наилучшим образом подходят для наших 232 сделок. Если мы возьмем полученные параметры и найдем оптимальное f по это­му распределению, ограничивая распределение +3 и -3 сигма, используя 100 равноотстоящих точек данных, то получим f= 0,206, или 1 контракт на каж­дые 23 783,17 доллара. Сравните это с эмпирическим методом, который покажет, что оптимальный рост достигается при 1 контракте на каждые 7918,04 доллара на балансе счета. Этот результат мы получаем, если ограничиваем распределение 3 сигма с каж­дой стороны от среднего. В действительности, в эмпирическом потоке сделок у нас был проигрыш наихудшего случая 2,96 сигма и выигрыш наилучшего случая 6,94 сигма. Теперь, если мы вернемся и ограничим распределение 2,96 сигма слева от среднего и 6,94 сигма справа (и на этот раз будем использовать 300 равноотсто­ящих точек данных), то получим оптимальное f = 0,954, или 1 контракт на каждые 5062,71 доллара на балансе счета. Почему оно отличается от эмпирического опти­мального f= 7918,04?

Проблема состоит в «грубости» фактического распределения. Вспомни­те, что уровень значимости наших наилучшим образом подходящих парамет­ров был только 7,8384%. Давайте возьмем распределение 232 сделок и помес­тим в 12 ячеек от -3 до +3 сигма.


ЯчейкиКоличество сделок
-3,0-2,52
-2,5-2,01
-2,0-1,52
-1,5-1,024
-1,0-0,539
,sr„. -0,50,043
ь-' 0,00,569
0,51,038
1,01,57
1,52,02
2,02,50
2,53,02

Отметьте, что на хвостах распределения находятся пробелы, т.е. области, или ячейки, где нет эмпирических данных. Эти области сглаживаются, когда мы приспосабливаем наше регулируемое распределение к данным, и именно эти сглаженные области вызывают различие между параметрическим и эмпири­ческим оптимальным f. Почему же наше характеристическое распределение при всех возможностях регулировки его формы не очень хорошо приближено к фактическому распределению? Причина состоит в том, что наблюдаемое распределение имеет слишком много точек перегиба. Параболу можно направить ветвями вверх или вниз. Однако вдоль всей параболы направление вогнутости или выпуклости не изменяется. В точке перегиба направление вогнутости изменяется. Парабола имеет 0 точек перегиба,

Рисунок 4-10 Регулируемое распределение для 232 сделок

Рисунок 4-11 Точки перегиба колоколообразного распределения


так как направление вогнутости никогда не изменяется. Объект, имеющий форму буквы S, лежащий на боку, имеет одну точку перегиба, т.е. точку, где вогну­тость изменяется. Рисунок 4-11 показывает нормальное распределение. Отметьте, что в колоколообразной кривой, такой как нормальное распределение, есть две точ­ки перегиба. В зависимости от значения SCALE наше регулируемое распре­деление может иметь ноль точек перегиба (если SCALE очень низкое) или две точки перегиба. Причина, по которой наше регулируемое распределение не очень хорошо описывает фактическое распределение сделок, состоит в том, что реальное распределение имеет слишком много точек перегиба. Означает ли это, что полученное характеристическое распределение не­верно? Скорее всего нет. При желании мы могли бы создать функцию рас­пределения, которая имела бы больше двух точек перегиба. Такую функцию можно было бы лучше подогнать к реальному распределению. Если бы мы создали функцию распределения, которая допускает неограниченное коли­чество точек перегиба, то мы бы точно подогнали ее к наблюдаемому распре­делению. Оптимальное f, полученное с помощью такой кривой, практически совпало бы с эмпирическим. Однако чем больше точек перегиба нам при­шлось бы добавить к функции распределения, тем менее надежной она была бы (т.е. она хуже представляла бы будущие сделки). Мы не пытаемся в точности подогнать параметрическое ik наблюдаемому, а ста­раемся лишь определить, как распределяются наблюдаемые данные, чтобы можно было предсказать с большой уверенностью будущее оптимальное 1(если данные бу­дут распределены так же, как в прошлом). В регулируемом распределении, подо­гнанном к реальным сделкам, удалены ложные точки перегиба.

Поясним вышесказанное на примере. Предположим, мы используем дос­ку Галтона. Мы знаем, что асимптотически распределение шариков, падаю­щих через доску, будет нормальным. Однако мы собираемся бросить только 4 шарика. Можем ли мы ожидать, что результаты бросков 4 шариков будут рас­пределены нормально? Как насчет 5 шариков? 50 шариков? В асимптотическом смысле мы ожидаем, что наблюдаемое распределение будет ближе к нормальному при увеличении числа сделок. Подгонка теорети­ческого распределения к каждой точке перегиба наблюдаемого распределения не даст нам большую степень точности в будущем. При большом количестве сде­лок мы можем ожидать, что наблюдаемое распределение будет сходиться с ожидае­мым и многие точки перегиба будут заполнены сделками, когда их число стремится к бесконечности. Если наши теоретические параметры точно отражают распределение реальных сделок, то оптимальное f, полученное на основе теоретического распреде­ления, при будущей последовательности сделок будет точнее, чем оптимальное f, рассчитанное эмпирически из прошлых сделок. Другими словами, если наши 232 сделки представляют распределение сделок в будущем, тогда мы можем ожидать, что распределение сделок в будущем будет ближе к нашему «настроенному» теоретическому распределению, чем к наблюдаемому, с его многочисленными точками перегиба и «зашумленностью» из-за конечного количества сделок. Таким образом, мы можем ожидать, что буду­щее оптимальное f будет больше похоже на оптимальное f, полученное из теоре­тического распределения, чем на оптимальное f, полученное эмпирически из на­блюдаемого распределения.

Итак, лучше всего в этом случае использовать не эмпирическое, а пара­метрическое оптимальное f. Ситуация аналогична рассмотренному случаю с 20 бросками монеты в предыдущей главе. Если мы ожидаем 60% выигрышей в игре 1:1, то оптимальное f= 0,2. Однако если бы у нас были только эмпири­ческие данные о последних 20 бросках, 11 из которых были выигрышными, наше оптимальное f составило бы 0,1. Мы исходим из того, что параметрическое оптимальное f ($5062,71 в этом случае) верно, так как оно оптимально для функ­ции, которая «генерирует» сделки. Как и в случае только что упомянутой игры с броском монеты, мы допускаем, что оптимальное f для следующей сделки опре­деляется параметрической генерирующей функцией, даже если параметрическое f отличается от эмпирического оптимального f.

Очевидно, что ограничительные параметры оказывают большое влияние на оптимальное f. Каким образом выбирать эти ограничительные парамет­ры? Посмотрим, что происходит, когда мы отодвигаем верхнюю границу. Следующая таблица составлена для нижнего предела 3 сигма с использова­нием 100 равноотстоящих точек данных и оптимальных параметров для 232 сделок:




Верхняя границаff$
3 Sigmas0,206$23783,17
4 Sigmas0,588$8332,51
5 Sigmas0,784$6249,42
6 Sigmas0,887$5523,73
7 Sigmas0,938$5223,41
8 Sigmas0,963$5087,81
***
***
***
100 Sigmas0,999$4904,46

Отметьте, что при постоянной нижней границе, чем выше мы отодвигаем верхнюю границу, тем ближе оптимальное f к 1. Таким образом, чем больше мы отодвигаем верхнюю границу, тем ближе оптимальное f в долларах будет к нижней границе (ожи­даемый проигрыш худшего случая). В том случае, когда наша нижняя граница нахо­дится на -3 сигма, чем больше мы отодвигаем верхнюю границу, тем ближе в пределе оптимальное f в долларах будет к нижней границе, т.е. к $330,13 -(1743,23 * 3) = = -$4899,56. Посмотрите, что происходит, когда верхняя граница не меняется (3 сигма), а мы отодвигаем нижнюю границу Достаточно быстро арифметическое математи­ческое ожидание такого процесса оказывается отрицательным. Это происходит потому, что более 50% площади под характеристической функцией находится слева от вертикальной оси. Следовательно, когда мы отодвигаем нижний ограни­чительный параметр, оптимальное f стремится к нулю. Теперь посмотрим, что произойдет, если мы одновременно начнем отодвигать оба ограничительных параметра. Здесь мы используем набор оптимальных пара­метров 0,02, 2,76, 0 и 1,78 для распределения 232 сделок и 100 равноотстоящих точек данных:


Верхняя и нижняя границаF f$
3 Sigmas0,206$23783,17
4 Sigmas0,158$42 040,42
5 Sigmas0,126$66 550,75
6 Sigmas0,104$97 387,87
***
***
***
100 Sigmas0,053$322625,17

Отметьте, что оптимальное f приближается к 0, когда мы отодвигаем оба ограни­чительных параметра. Более того, так как проигрыш наихудшего случая увеличи­вается и делится на все меньшее оптимальное f, наше f$, т.е. сумма финансирова­ния 1 единицы, также приближается к бесконечности.