Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров — страница 39 из 66

акже не обязательно было бы знать исторические данные, но значения параметров такой подгонки не обязательно относились бы к моментам рас­пределения. Эти методы могут лишить вас возможности посмотреть, что про­изойдет, если увеличится эксцесс или изменится асимметрия, изменится мас­штаб и т.д. Наше регулируемое распределение является логичным выбором теоретической функции, которая хорошо описывает фактическое распределе­ние, так как параметры не только задают моменты распределения, они дают нам контроль над этими моментами при прогнозировании будущих измене­ний в распределении. Более того, рассчитать параметры рассматриваемого здесь регулируемого распределения легче, чем подогнать какую-либо произ­вольную функцию.

Планирование сценария

Специалисты, которые в силу своей профессии занимаются прогнозировани­ем (экономисты, аналитики фондового рынка, метеорологи, правительствен­ные чиновники и т.д.), довольно часто ошибаются, но надо признать, что большинство решений, которые человек должен принять в жизни, обычно требуют прогноза.

Здесь есть две ловушки. Во-первых, люди делают слишком оптимистичные предположения о будущем. Большинство из нас уверены, что в этом месяце мы скорее выиграем в лотерею, чем погибнем в автокатастрофе, даже если веро­ятность последнего выше. Это верно не только на уровне отдельного лица, но и на уровне группы. Когда люди работают вместе, они стремятся видеть бла­гоприятный результат как наиболее вероятный результат (иначе не было бы смысла работать, пока, конечно, все мы не стали автоматами, безрассудно надрывающимися на «тонущих кораблях»).

Вторая и более пагубная ловушка состоит в том, что мы делаем прямые про­гнозы, например пытаемся предсказать цену галлона бензина через два года или пытаемся предсказать, что произойдет с нашей карьерой, кто будет следующим президентом, каким будет следующий стиль, и так далее. Что бы мы ни говорили о будущем, мы стремимся думать о единственном, наиболее вероятном результа­те. Таким образом, когда необходимо принять решение или самостоятельно, или коллективно, мы принимаем его, основываясь на том, что прогноз есть един­ственный наиболее вероятный результат. В итоге, мы часто получаем неприятные сюрпризы.

Планирование сценария отчасти решает эту проблему. Сценарий просто яв­ляется возможным прогнозом, одним из путей, по которому могут развиваться события. Планирование сценария предполагает набор сценариев для покрытия возможного спектра исходов. Конечно, полный спектр никогда не будет получен, но вы можете рассмотреть столько сценариев, сколько сочтете нужным. Таким образом, в противоположность прямому прогнозу наиболее вероятного результата вы можете подготовиться к будущему. Более того, планирование сце­нария подготовит вас к тому, что может быть в противном случае неожиданным событием.

Допустим, вы занимаетесь долгосрочным планированием для компании, которая производит некий продукт. Вместо того, чтобы сделать один наиболее вероятный прямой прогноз, используйте метод планирования сценария. Ме­тодом «мозгового штурма» вместе с коллегами определите возможные пути развития событий. Что будет, если вы не сможете получить достаточно сырья, чтобы произвести этот продукт? Как изменится ситуация, если один из ваших конкурентов обанкротится? Как будут развиваться события, если на рынке по­явится новый конкурент? Что произойдет, если вы серьезно недооцените спрос на этот продукт? Что будет, если где-либо начнется война? А если нач­нется ядерная война? Так как каждый сценарий возможен, его нужно рассмат­ривать серьезно. Теперь надо понять, что вы будете делать после того, как оп­ределите эти сценарии. Вы должны определить цель, которую хотите достичь при том или ином сце­нарии. В зависимости от сценария цель не обязательно должна быть положи­тельной. Например, при пессимистическом сценарии это могут быть просто ремонтно-восстановительные работы на предприятии. После того как вы опреде­лите цель для данного сценария, надо составить план на случай непредвиден­ных ситуаций, относящихся к этому сценарию, для достижения необходимой цели. Например, как уже было сказано, при невероятно мрачном сценарии ва­шей целью могут быть ремонтно-восстановительные работы, и вам надо иметь план, чтобы минимизировать ущерб. Помимо всего прочего, планирование сце­нария даст вам алгоритм, которому надо следовать, если определенный сцена­рий реализуется. Существует тесная связь между планированием сценария и оптимальным f. Оптимальное f позволяет разместить оптимальное количество ресурсов при определенном наборе возможных сценариев. На самом деле, реализуется только один сценарий, даже если мы планируем их несколько. Планирование сценария ставит нас в ситуацию, когда необходимо принять решение, какое количество ресурсов размещать сегодня при возможных сценариях на завтра. Эта количественная оценка последствий — поистине «сердце» планирования сценария.

Чтобы определить, сколько ресурсов разместить при наличии определенно­го набора сценариев, мы можем использовать еще один параметрический метод поиска оптимального f. Сначала следует описать каждый сценарий. Далее мы должны оценить вероятность (это число между 0 и 1) реализации каждого сце­нария. Сценарии с вероятностью 0 мы не будем рассматривать. Отметьте, что вероятность каждого сценария уникальна. Допустим, вы принимаете решения в производственной корпорации АБВ. Два сценария (из нескольких) выглядят следующим образом. При одном сценарии корпорация АБВ подает документы на банкротство с вероятностью 0,15, в другом сценарии АБВ уходит с рынка из-за напряженной конкуренции с иностранными корпорациями с вероятностью 0,07. Теперь мы должны понять, включает ли первый сценарий заявление о бан­кротстве из-за второго сценария, т.е. напряженной конкуренции. Если это так. то вероятность первого сценария не учитывает вероятность второго сценария, и мы должны уменьшить вероятность первого сценария до 0,08 (0,15 -- 0,07). Отметьте также, что уникальность вероятности важна для каждого сце­нария, чтобы сумма вероятностей всех рассматриваемых сценариев была равна в точности 1, а не 1,01 или 0,99.

Для каждого сценария мы определяем вероятность его осуществления. Следует также определить конечный результат, то есть численное значение. Оно может быть в долларах или лотах — в чем угодно. Однако ваши выходные данные должны быть в тех же единицах, что и входные данные. Чтобы использовать этот метод, вы должны обязательно иметь, по крайней мере, один сценарий с отрицательным результатом. Если вы хотите знать размер ресурса, который следует разместить сегодня при воз­можных сценариях на завтра, и не имеете отрицательного сценария, тогда следует разместить 100% этого ресурса. Без сценария с отрицательным результатом малове­роятно, что данный набор сценариев реалистичен.

Последнее условие использования этого метода состоит в том, что математи­ческое ожидание, сумма всех результатов, умноженных на их соответствующие вероятности, должно быть больше нуля.

где Р = вероятность сценария i;

А = результат сценария i;

N == общее число рассматриваемых сценариев.

Если математическое ожидание равно нулю или отрицательное, метод нельзя использовать. Это не означает, что нельзя использовать само планирование сценария. Можно и нужно. Однако оптимальное f может быть получено толь­ко в том случае, если математическое ожидание больше нуля. Когда матема­тическое ожидание равно нулю или отрицательное, мы не должны размещать ресурсы.

И наконец, вы должны рассмотреть максимально возможный спектр резуль­татов. Другими словами, следует рассмотреть 99% возможных исходов. Многие сценарии можно сделать шире, так что вам не надо будет расписывать 10 000 сце­нариев, чтобы охватить 99% спектра. При расширении сценариев не следует

слишком упрощать ситуацию, выбрав только три сценария: оптимистический, пессимистический и нейтральный. В этом случае полученные ответы будут слиш­ком грубы, чтобы иметь какую-либо практическую ценность. Захотите ли вы ис­кать оптимальное f для торговой системы по трем сделкам?

Какое количество сценариев оптимально? Используйте то количество, с ко­торым вы справитесь. Здесь хорошим помощником будет компьютер. Допус­тим, речь идет о компании АБВ и о размещении ее нового продукта на рынке отсталой далекой страны. Рассмотрим пять возможных сценариев (в действи­тельности сценариев должно быть больше, но мы возьмем пять для примера). Эти пять сценариев отражают то, что может произойти в данной стране в буду­щем, — то есть вероятность определенных событий и прибыль или убыток от инвестирования.


СценарийВероятностьРезультат
Война0,1-$500 000
Кризис0,2-$200 000
Застой0,20
Мир0,45$500 000
Процветание0,05$1000000
Сумма 1,00

Таким образом, сумма вероятностей равна 1. Обратите внимание, что у нас есть 1 сце­нарий с отрицательным результатом, но математическое ожидание больше нуля:

(0,1 * -$500 000) + (0,2 * -$200 000) +... = $185 000

С таким набором сценариев мы можем использовать данный метод. Отметьте, что если бы мы использовали метод наиболее вероятного результата, то пришли бы к заключению, что в этой стране скорее всего будет мир, и действова­ли бы, исходя из этой единственной возможности, только расплывчато осознавая наличие других исходов.

Рассчитаем оптимальное f. Как мы уже знаем, оптимальное f (это число между О и 1) максимизирует среднее геометрическое:

поэтому

Далее, мы можем рассчитать фактическое TWR:

(4.17) TWR= Среднее геометрическое^X,

где N= число сценариев;

TWR= относительный конечный капитал;

HPR= прибыль за период удержания позиции для сценария i;

А = результат сценария i;

Р.= вероятность сценария i;