Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров — страница 42 из 66



Глава 5

Введение в методы управления капиталом с использованием параметрического подхода при одновременной торговле по нескольким позициям

В этой книге уже упоминалось об использовании опционов отдельно или совместно с позицией по базовому инструменту для улучшения торговых результатов. Покупка пут-опциона вместе с длинной позицией по базовому инструменту (или просто покупка колл-оп-циона), а иногда даже продажа (короткая продажа) колл-опциона совместно с длинной позицией по базовому инструменту могут ус­корить асимптотический геометрический рост. Это происходит потому, что очень часто (но не всегда) использование опционов уменьшает дисперсию в большей степени, чем уменьшает арифме­тический средний доход. В результате, исходя из фундаментально­го уравнения торговли, мы получаем большее оценочное TWR. Опционы можно использовать как самостоятельные инструмен­ты, так и вместе с позициями по базовому инструменту для уп­равления риском. В будущем, так как трейдеры все больше кон­центрируются на управлении риском, опционы, вероятно, будут играть еще большую роль.В книге «Формулы управления портфелем» была рассмотрена взаи­мосвязь оптимального/и опционов. * В этой главе мы продолжим начатую дискуссию и обсудим торговлю по нескольким позициям, а также поговорим об опционах.Настоящая глава посвящена еще одному методу поиска оптималь­ного/для немеханических торговых систем. Параметрические ме­тоды, рассмотренные до этого момента, могут использовать те, кто не применяет механические системы. Допустим, вы не исполь­зуете механическую систему и применяете метод, описанный в главе 4. Если вы захотите рассчитать эксцесс, то сделать это будет не очень легко (по крайней мере, точное значение эксцесса быстро получить, скорее всего, не удастся). Данная глава предназ­начена прежде всего для тех, кто использует немеханические ме­тоды принятия решений об открытии и закрытии позиций. Трей­дерам, использующим эти методы, надо будет рассчитывать не параметры распределения сделок, а значения для волатильности базового инструмента и прогнозируемой цены базового инструмен­та. Трейдеру, не использующему механическую, объективную сис­тему, будет намного легче получить именно эти величины, чем рассчитать параметры для распределения сделок, которые еще не произошли.

Обсуждение оптимального/и его побочных продуктов для тех трейдеров, которые не используют механическую, объективную систему, мы начнем с рассмотрения ситуации, когда одновремен­но открыто несколько позиций. Означает ли это, что тот, кто использует механические методы для открытия и закрытия по­зиций, не может использовать описанные подходы? Нет. В Главе 6 предложен метод поиска оптимальных, одновременно откры­тых позиций независимо от того, использует трейдер механичес­кую систему или нет. В этой главе рассмотрена ситуация, когда одновременно открыто несколько позиций (с использованием оп­ционов или без), и применяется немеханический подход.


Расчет волатильности

Один из важных параметров, который трейдер, желающий использовать опи­сываемые в этой главе концепции, должен ввести, — это волатильность. Су­ществует два способа определения волатильности. Первый — использование оценки на основе рыночных данных — дает подразумеваемую волатильность. Модели ценообразования опционов, представленные в этой главе, использу­ют волатильность в качестве одного из своих входных параметров для получе­ния справедливой теоретической цены опциона. Подразумеваемая волатиль­ность основывается на предположении, что рыночная цена опциона эквива­лентна его справедливой теоретической цене. Волатильность, которая дает справедливую теоретическую цену, равную рыночной цене, и есть подразуме­ваемая волатильность. Второй метод расчета волатильности основывается на использовании исто­рических данных. Полученная таким образом историческая волатильность оп­ределяется фактической ценой базового инструмента. Хотя волатильность в ка­честве входного данного в модели ценообразования опционов выражается в го­довых процентах, при ее определении используется более короткий временной отрезок, обычно 10-20 дней, а получившийся в результате ответ переводится в годовое значение.

Ниже показан расчет 20-дневной годовой исторической волатильности.

Шаг 1. Разделите сегодняшнее закрытие на предыдущее закрытие ры­ночного дня.


Шаг 2. Возьмите натуральный логарифм частного, полученного в шаге 1. Для примера рассчитаем годовую историческую волатильность японской йены на март 1991 года. При написании даты будем использовать формат (год/месяц/день). Закрытие 910225, равное 74,52, разделим на закрытие 910222, равное 75,52.

74,82 / 75,52 = 0,9907309322 Натуральный логарифм 0,9907309322 равен 0,009312258.


Шаг 3. По истечении 21 дня у вас будет 20 значений для шага 2. Теперь рас­считайте 20-дневную скользящую среднюю значений из шага 2.


Шаг 4. Найдите 20-дневную дисперсию выборки данных из шага 2. Для этого необходима 20-дневная скользящая средняя (см. шаг 3). Далее, для каждого из 20 последних дней вычтем скользящую среднюю из значе­ний шага 2. Теперь возведем в квадрат полученные значения, чтобы преобразовать все отрицательные ответы в положительные. После этого сложим все значения за последние 20 дней. Наконец, разделим найденную сумму на 19 и получим дисперсию по выборке данных за последние 20 дней. 20-дневная дисперсия для 901226 составляет 0,00009. Подобным об­разом вы можете рассчитать 20-дневную дисперсию для любого дня.


Шаг 5. После того как вы определили 20-дневную дисперсию для конкрет­ного дня, необходимо преобразовать ее в 20-дневное стандартное от­клонение. Это легко сделать путем извлечения квадратного корня из дисперсии. Таким образом, для 901226 квадратный корень дисперсии (которая, как было показано, равна 0,00009) даст нам 20-дневное стандартное отклонение 0,009486832981.

Шаг 6. Теперь преобразуем полученные данные в «годовые». Так как мы используем дневные данные и исходим из того, что по йене в году 252 торговых дня (примерно), умножим ответы из шага 5 на квад­ратный корень 252, то есть на 15,87450787. Для 901226 20-дневное стандартное отклонение по выборке составляет 0,009486832981. Умножив его на 15,87450787, получаем 0,1505988048. Это значе­ние является исторической волатильностью, в нашем случае — 15,06%, и оно может быть использовано в качестве входного зна­чения волатильности в модели ценообразования опционов Блэка-Шоулса.

Следующая таблица показывает шаги, необходимые для нахождения 20-дневной «годовой» исторической волатильности. Заметьте, что промежуточные шаги для определения дисперсии, которые были показаны в предыдущей таблице, сюда не включены.


АВСD 20-дневная средняяЕ 20-дневная дисперсияFG
ДатаЗакрытиеLN изменений20-дневное стандартное отклонениеГодовое значение F * 15,87451
90112777,96
90112876,91-0,0136
90112974,93-0,0261
90113075,370,0059
90120374,18-0,0159
90120474,720,0073
90120574,57-0,0020
90120675,420,0113
90120776,440,0134

торгуете без опционов и рассматриваете торговлю как не ограниченную во вре­мени, ваш реальный риск банкротства равен 1. При таких условиях вы неми­нуемо разоритесь, что вполне согласуется с уравнениями риска банкротства, поскольку в них в качестве входных переменных используются эмпирические данные, то есть входные данные в уравнениях риска банкротства основывают­ся на ограниченных наборах сделок. Утверждение о гарантированном банкрот­стве при бесконечно долгой игре с неограниченной ответственностью делает­ся с позиций параметрического подхода. Параметрический подход учитывает большие проигрышные сделки, которые расположены в левом хвосте распре­деления, но еще не произошли, поэтому они не являются частью ограничен­ного набора, используемого в качестве входных данных в уравнениях риска банкротства. Для примера представьте себе торговую систему, в которой применяется по­стоянное количество контрактов. В каждой сделке используется 1 контракт. Что­бы узнать, каким может стать баланс через Х сделок, мы просто умножим Х на среднюю сделку. Таким образом, если система имеет среднюю сделку 250 долла­ров и мы хотим знать, каким может стать баланс через 7 сделок, мы $250 умножим на 7 и получим $1750. Отметьте, что кривая арифметического математического ожидания задается линейной функцией. Любая сделка может принести убыток, который отбросит нас назад (времен­но) от ожидаемой линии. В такой ситуации есть предел проигрыша по сделке. Так как наша линия всегда выше, чем самая большая сумма, которую можно проиг­рать за сделку, мы не можем обанкротиться сразу. Однако длинная проигрышная полоса может отбросить нас достаточно далеко от этой линии, и мы не сможем продолжить торговлю, то есть обанкротимся. Вероятность подобного развития событий уменьшается с течением времени, когда линия ожидания становится выше. Уравнение риска банкротства позволяет рассчитать вероятность банкрот­ства еще до того, как мы начнем торговать по выбранной системе. Если бы мы торговали в такой системе на основе фиксированной доли счета, линия загибалась бы вверх, становясь после каждой сделки все круче. Однако проигрыш всегда сопоставим с тем, насколько высоко мы находимся на линии. Таким образом, вероятность банкротства не уменьшается с течением времени. В теории, однако, риск банкротства при торговле фиксированной долей счета мож­но сделать равным нулю, если торговать бесконечно делимыми единицами. К ре­альной торговле это не применимо. Риск банкротства при торговле фиксирован­ной долей счета всегда немного выше, чем в этой же системе при торговле на ос­нове постоянного количества контрактов. В действительности, нет верхнего предела суммы, которую вы можете проиг­рать за одну сделку; кривые состояния счета могут снизиться до нуля за одну сделку независимо от того, насколько высоко они расположены. Таким обра­зом, если мы торгуем бесконечно долгий период времени инструментом с нео­граниченной ответственностью, постоянным количеством контрактов или фиксированной долей счета, риск банкротства составляет 1. Банкротство гаран­тировано. Единственный способ избежать такого развития событий — поста­вить ограничение на максимальный проигрыш. Этого можно достичь, исполь­зуя опционы, когда позиция относится в дебет (если трейдер платит за премию больше, чем получает, то разница между уплаченной и полученной суммами на­зывается «дебет»)