Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров — страница 49 из 66

Невозможность четкого определения вида связи создает некоторые пробле­мы в работе. Сначала мы рассмотрим только причинные связи, или те, которые, как мы полагаем, являются причинными. В следующей главе мы обсудим корреляционные связи, которые включают также и причинные связи. Вы должны понимать, что методы, упомянутые в следующей главе в отношении корреляци­онных связей, применимы и для причинных связей. Обратное не всегда верно. Применение методов, используемых для причинных связей, в случае, когда свя­зи просто корреляционны, является ошибкой. Причинная связь подразумевает, что коэффициенты корреляции между ценами двух объектов составляют 1 или -1. Для упрощения будем считать, что причинная связь затрагивает два инстру­мента (акция, товар, опцион и т.д.), имеющих один базовый инструмент. Это могут быть спрэды, стредлы, «покрытая продажа» или любая другая позиция, когда вы используете базовый инструмент совместно с одним или более опцио­нами или один или несколько опционов по одному базовому инструменту, даже если у вас нет позиции по этому базовому инструменту.

Простейшим примером одновременных позиций является комбинация оп­ционов (т.е. позиция по базовому инструменту отсутствует), когда совокупная позиция заносится в дебет и можно использовать уравнение (5.14). Таким обра­зом, вы можете определить оптимальное f для всей позиции, а также побочные продукты (включая оптимальную дату выхода). В этом случае переменная S вы­ражает общие затраты на сделку, а переменная Z(T, U - Y) выражает «общую» цену всех одновременных позиций при цене базового инструмента U, когда вре­мя, оставшееся до истечения срока исполнения, равно Т. Когда совокупная по­зиция заносится в кредит, можно определить оптимальное f с помощью уравне­ния (5.20). Как и в предыдущем случае, мы должны изменить переменные S и Z(T, U - Y) для отражения «чистой» цены всех позиций. Например, мы рассмат­риваем возможность открытия длинного стредла (покупка пут-опциона и колл-опциона по одному базовому инструменту с одинаковой ценой исполнения и датой истечения). Допустим, что полученное с помощью этого метода опти­мальное f соответствует 1 контракту на каждые 2000 долларов. Таким образом, на каждые 2000 долларов на счете мы должны покупать 1 стредл (1 пут-опцион и 1 колл-опцион). Оптимальное f, полученное с помощью данного метода, отно­сится к финансированию 1 единицы для всей позиции. Этот факт касается всех методов, рассмотренных в данной главе. Ниже представлено уравнение для одновременных позиций, причем не имеет значения, используется позиция по базовому инструменту или нет. Мы будем применять эту обобщенную форму для одновременных позиций с причинной связью:

где N = число «ног» (число составляющих сложной позиции);

HPR(T, U) = HPR для тестируемых значений Т и U;

C(T, U) = коэффициент i-ой «ноги» при данном значении U, когда время, оставшееся до истечения срока, равно Т.

Для опционных «ног», занесенных в дебет, или длинной позиции по базовому инструменту:

Для опционных «ног», занесенных в кредит, или короткой позиции по базовому инструменту:

где f = тестируемое значение f;

S = текущая цена опциона или базового инструмента;

Z(T, U - Y) = теоретическая цена опциона, когда цена базового инструмента равна U - Y, а время, оставшееся до срoка истечения, равно Т;

Р(Т, U) = вероятность того, что базовый инструмент равен U, когда время, оставшееся до истечения срока испол­нения, равно Т;

Y = разность между арифметическим математическим ожиданием базового инструмента (согласно уравнению (5.10)) и текущей ценой.

Уравнение (5.22) следует использовать, когда речь идет об одновременно исполь­зуемых «ногах», и вам необходимо найти оптимальное f и оптимальную дату вы­хода по всей позиции (т.е. когда речь идет об одновременной торговле по несколь­ким позициям).

Для каждого значения U вы можете найти HPR с помощью уравнения (5.22), а для каждого значения f вы можете найти среднее геометрическое, составленное из всех HPR, с помощью уравнения (5.18а):

где G(f, Т) = среднее геометрическое HPR для данного тестируемого зна­чения f и для данного времени, остающегося до истечения срока от указанной даты выхода. Значения f и Т, которые дают наивысшее среднее геометрическое, являются значе­ниями, которые следует использовать для всего набора од­новременных позиций.

Подведем итог. Нам надо найти оптимальное f для каждого дня (между теку­щим днем и днем истечения) как дня выхода. Для каждой даты выхода необхо­димо определить цены между плюс и минус Х стандартных отклонений (обыч­но Х будет равно 8) от базовой цены базового инструмента. Базовая цена мо­жет быть текущей ценой базового инструмента, или же она может быть скорректирована для учета ценового тренда. Теперь вам надо найти значение для f между 0 и 1, которое даст наибольшее среднее геометрическое HPR, ис­пользуя HPR для цен между плюс и минус Х стандартных отклонений от базо­вой цены для указанной даты выхода. Таким образом, для каждой даты выхода у вас будет оптимальное f и соответствующее среднее геометрическое. Дата выхода, которая дает наибольшее среднее геометрическое, является опти­мальной датой выхода из позиции, и f, соответствующее этому среднему гео­метрическому, является оптимальным f. Структура этой процедуры следующая:


Для каждой даты выхода между текущей датой и датой истечения

Для каждого значения f (пока не будет найдено оптимальное)

Для каждой рыночной системы

Для каждого тика между +8 и -8 стандартными отклонениями

Определите HPR

Следует отметить, что мы можем определить оптимальную дату выхода, т.е. дату, когда следует закрыть всю позицию. Можно применить эту же процедуру для на­хождения оптимальной даты выхода для каждой «ноги» (отдельной позиции), что, правда, геометрически увеличит число расчетов. Тогда процедура несколько изменится и будет выглядеть следующим образом:

Для каждой рыночной системы

Для каждой даты выхода между текущей датой и датой истечения

Для каждого значения f (пока не будет найдено оптимальное)

Для каждой рыночной системы

Для каждого тика между +8 и -8 стандартными отклонениями

Определите HPR

Итак, мы рассмотрели одновременную торговлю по нескольким позициям при наличии причинной связи. Теперь рассмотрим ситуацию, когда связь случайна.


Торговля по нескольким позициям при наличии случайной связи

Вы должны знать, что, как и в случае с причинной связью, методы, упомянутые в следующей главе, посвященной корреляционным связям, применимы и для слу­чайных связей. Но не наоборот. Неправильно применять методы для случайных связей к корреляционным связям (когда коэффициенты корреляции не равны 0). При случайной связи коэффициент корреляции между ценами двух инструментов всегда равен 0.

Случайная связь между двумя торгуемыми инструментами (акции, фьючерсы, опционы и т.д.) имеет место в том случае, если их цены не зависят друг от друга, т.е. коэффициент корреляции цен равен нулю, или ожидается, что он будет равен нулю в асимптотическом смысле.

Когда коэффициент корреляции двух составляющих равен О, HPR для совокуп­ной позиции рассчитывается следующим образом:

где N = число «ног» позиции;

HPR(T, U) = HPR для данного тестируемого значения Т и U;

С. (Т, U) = коэффициент i-ой «ноги» при данном значении U, когда время, оставшееся до истечения срока, равно Т.

Для опционных «ног», занесенных в дебет, или длинной позиции по базовому инструменту:

Для опционных «ног», занесенных в кредит, или короткой позиции по базовому инструменту:

где f = тестируемое значение f;

S = текущая цена опциона;

Z(T, U - Y) = теоретическая цена опциона, когда цена базового инстру­мента равна U - Y, а время, оставшееся до срока истечения, равно Т;

Pj(T, U) = вероятность того, что базовый инструмент равен U, когда время, оставшееся до истечения срока исполне­ния, равно Т;

Y = разность между арифметическим математическим ожи­данием базового инструмента (согласно уравнению (5.10)) и текущей ценой.

Теперь мы можем рассчитать среднее геометрическое HPR для случайной связи:

где G(f, Т) = среднее геометрическое HPR для данного тестируе­мого значения f и данного времени Т, остающегося до истечения срока от указанной даты выхода. Зна­чения f и Т, которые дают наибольшее среднее геометрическое, оптимальны. Структура этой процедуры такая же, как и в случае с причинной связью:


Для каждой даты выхода между текущей датой и датой истечения

Для каждого значения f (пока не будет найдено оптимальное)

Для каждой рыночной системы

Для каждого тика между +8 и -8 стандартными отклонениями

Определите HPR

Единственное различие между процедурой нахождения среднего геометрического для случайных связей и процедурой для причинных связей состоит в том, что пока­затель степени для каждого HPR при случайной связи рассчитывается путем умно­жения вероятностей того, что «ноги» будут находиться на данной цене определен­ного HPR. Все эти суммы вероятностей, используемые в качестве показателей сте­пени для каждого HPR, сами по себе также суммируются, так что, когда все HPR перемножены для получения промежуточного TWR, его можно возвести в степень единицы, деленной на сумму показателей степени, используемых в HPR. И снова процедуру можно изменить, чтобы найти оптимальные даты выхода для каждой составляющей позиции.

Несмотря на всю сложность, уравнение (5.25) все-таки не решает проблему ненулевого коэффициента линейной корреляции между ценами двух компо­нентов. Как видите, определение оптимальных весов компонентов является до­вольно сложной задачей! В следующих нескольких главах вы увидите, как найти правильные веса для каждой составляющей позиции, будь то акция, товар, опцион или любой другой инструмент, независимо от связи (причинная, случай­ная или корреляционная). Входные данные, которые нам потребуются, следую­щие: (1) коэффициенты корреляции средних дневных HPR позиций в портфеле на основе 1 контракта, (2) арифметические среднее HPR и стандартные откло­нения HPR.