При определении коэффициентов корреляции важно использовать точки данных того же временного периода, который был использован для определения ожидаемых прибылей и дисперсий. Другими словами, если вы используете годовые данные для определения ожидаемых прибылей и дисперсии прибылей (т.е. ведете расчеты на годовой основе), следует использовать годовые данные и при определении коэффициентов корреляции. Если вы используете дневные данные для определения ожидаемых прибьыей и дисперсии прибылей (т.е. ведете расчеты на дневной основе), тогда вам следует использовать дневные данные для определения коэффициентов корреляции. Вернемся к нашим четырем инвестициям — Toxico, Incubeast Corp., LA Garb и сберегательному счету. Присвоим им символы Т, 1, L и S соответственно. Ниже приведена таблица их коэффициентов линейной корреляции:
I | L | S | |
Т | -0,15 | 0,05 | о |
I | 0,25 | о | |
L | о |
На основе полученных параметров мы можем рассчитать ковариацию между двумя ценными бумагами:
Стандартные отклонения Sa и Sб можно найти, взяв квадратный корень дисперсии ожидаемых прибылей для ценных бумаг а и б. Вернемся к нашему примеру. Мы можем определить ковариацию между Toxico (Т) и Incubeast (I) следующим образом:
Зная ковариацию и стандартные отклонения, мы можем рассчитать коэффициент линейной корреляции:
Отметьте, что ковариация ценной бумаги самой к себе является дисперсией, так как коэффициент линейной корреляции ценной бумаги самой к себе равен 1:
Теперь можно создать таблицу ковариаций для нашего примера с четырьмя инвестиционными альтернативами:
Т | I | L | S | |
Т | 0,1 | - 0,0237 | 0,01 | 0 |
I | - 0,0237 | 0,25 | 0,079 | 0 |
L | 0,01 | 0,079 | 0,4 | 0 |
S | 0 | 0 | 0 | 0 |
Мы собрали необходимую параметрическую информацию и теперь попытаемся сформулировать основную проблему. Во-первых, сумма весов ценных бумаг, составляющих портфель, должна быть равна 1, так как операции ведутся на денежном счете, и каждая ценная бумага полностью оплачена:
где N == число ценных бумаг, составляющих портфель;
Х = процентный вес ценной бумаги L
Важно отметить, что в уравнении (6.04) каждое значение Х должно быть неотрицательным числом.
Следующее равенство относится к ожидаемой прибыли всего портфеля — это Е в теории Е — V. Ожидаемая прибыль портфеля является суммой прибылей его компонентов, умноженных на соответствующие веса:
где Е = ожидаемая прибыль портфеля;
N = число ценных бумаг, составляющих портфель;
Xi = процентный вес ценной бумаги i;
Ui= ожидаемая прибыль ценной бумаги i. И наконец, мы подошли к параметру V, т. е дисперсии ожидаемых прибылей:
Нашей целью является поиск значений Х (причем их сумма равна единице), которые дают наименьшее значение V для определенного значения Е. Максимизировать (или минимизировать) функцию Н(Х, Y) при наличии условия или ограничения G(X, Y) можно с помощью метода Лагранжа. Для этого зададим функцию Лагранжа F(X, Y, L):
(6.07) F(X,Y,L) = H(X,Y) + L * G(X,Y)
Обратите внимание на форму уравнения (6.07). Новая функция F(X,Y,L) равна множителю Лагранжа L (его значение мы пока не знаем), умноженному на ограничительную функцию G(X,Y), плюс первоначальная функция H(X,Y), экстремум которой мы и хотим найти.
Решение этой системы из трех уравнений даст точки (X1Y1) относительного экстремума:
FxX,Y,L) = О Fy(X,Y,L) = О FL(X,Y,L) = О
Допустим, мы хотим максимизировать произведение двух чисел при условии, что их сумма равна 20. Пусть Х и Y два числа. Таким образом, H(X,Y) = Х * Y является функцией, которая должна быть максимизирована при наличии ограничительной функции G(X,Y) = Х + Y - 20 = 0. Зададим функцию Лагранжа:
F(X,Y,L) = Х * Y + L * (X + Y- 20) Fx(X,Y,L)=Y+L Fy(X,Y,L)=X+L FL(X,Y,L)=
X +Y-20
Теперь приравняем F^(X,Y,L) и Fy(X,Y,L) нулю и решим каждое из них для получения L:
Y+L=0 Y=-L и
X+L=0 X=-L
Теперь, приняв FL(X,Y,L) = 0, мы получим Х + Y - 20 = 0. Наконец, заменим Х и Y эквивалентными выражениями, содержащими L:
(-L) + (-L) - 20 = О 2 * -L - 20 L=-10
Так как Y = -L, то Y = 10 и Х = 10. Максимальное произведение: 10*10= 100.
Метод множителей Лагранжа был продемонстрирован для двух переменных и одной 01раничительной функции. Метод можно также применять, когда есть более чем две переменные и более чем одна ограничительная функция. Далее для примера следует форма для поиска экстремума, когда есть три переменные и две ограничительные функции:
В этом случае, чтобы определить точки относительных экстремумов, вам надо решить систему из пяти уравнений с пятью неизвестными. Позже мы покажем, как это сделать.
Сформулируем проблему несколько иначе: необходимо минимизировать V, т.е. дисперсию всего портфеля, с учетом двух следующих ограничений:
где N= число ценных бумаг, составляющих портфель;
Е = ожидаемая прибыль портфеля;
Х = процентный вес ценной бумаги i;
U. = ожидаемая прибыль ценной бумаги i.
Минимизация ограниченной функции многих переменных может быть проведена путем введения множителей Лагранжа и частного дифференцирования по каждой переменной. Поэтому мы сформулируем поставленную задачу в терминах функции Лагранжа, которую назовем Т:
где V= дисперсия ожидаемых прибылей портфеля из уравнения (6.06);
N = число ценных бумаг, составляющих портфель;
Е = ожидаемая прибыль портфеля;
X. = процентный вес ценной бумаги i;
U. = ожидаемая прибыль ценной бумаги i;
L, = первый множитель Лагранжа;
L = второй множитель Лагранжа.
Мы получим портфель с минимальной дисперсией (т.е. минимальным риском), приравняв к нулю частные производные функции Т по всем переменньм.
Давайте снова вернемся к нашим четырем инвестициям: Toxico, Incubeast Corp., LA Garb и сберегательному счету. Если мы возьмем первую частную производную Т по Х1, то получим:
Приравняв это выражение нулю и разделив обе части уравнения на 2, получим:
Таким же образом:
Таким образом, проблему минимизации V при данном Е для портфеля с N компонентами можно решить с помощью системы N + 2 уравнений с N + 2 неизвестными. Для случая с четырьмя компонентами обобщенная форма будет иметь следующий вид:
где Е = ожидаемая прибыль портфеля;
Хi = процентный вес ценной бумаги i;
Ui = ожидаемая прибыль по ценной бумаге i;
COV А, Б = ковариация между ценными бумагами А и Б;
L1 = первый множитель Лагранжа;
12 = второй множитель Лагранжа.
Обобщенную форму можно использовать для любого числа компонентов. Например, если речь идет о трех компонентах (т.е. N = 3), система уравнений будет выглядеть следующим образом:
Прежде чем решать систему уравнений, необходимо задать уровень ожидаемой прибыли Е. Решением будет комбинация весов, которая даст искомое Е при наименьшей дисперсии. После того как вы определитесь с выбором Е, у вас будут все входные переменные, необходимые для построения матрицы коэффициентов.
Переменная Е в правой части первого уравнения — это значение прибыли. для которой вы хотите определить комбинацию ценных бумаг в портфеле. Первое уравнение говорит о том, что сумма всех ожидаемых прибылей, умноженных на
соответствующие веса, должна равняться заданному Е. Второе уравнение отражает тот факт, что сумма весов должна быть равна 1. Была показана матрица для случая с тремя ценными бумагами, но вы можете использовать обобщенную форму для N ценных бумаг.
Возьмем ожидаемые прибыли и ковариации из уже известной таблицы ковариаций и подставим коэффициенты в обобщенную форму. Таким образом из коэффициентов обобщенной формы можно создать матрицу. В случае четырех компонентов (N = 4) мы получим 6 рядов (N + 2):
X1 | X2 | X3 | X4 | L1 | L2 | Ответ |
0,095 | 0,13 | 0,21 | 0,085 | Е | ||
1 | 1 | 1 | 1 | 1 | ||
0,1 | - 0,0237 | 0,01 | 0 | 0,095 | 1 | 0 |
- 0,0237 | 0,25 | 0,079 | 0 | 0,13 | 1 | 0 |
0,01 | 0,079 | 0,4 | 0 | 0,21 | 1 | 0 |
0 | 0 | 0 | 0 | 0,085 | 1 | 0 |
Отметьте, что мы получили 6 столбцов коэффициентов. Если добавить столбец свободных членов к матрице коэффициентов, мы получим расширенную матрицу.
Заметьте, что коэффициенты в матрице соответствуют нашей обобщенной форме:
Матрица является удобным представлением этих уравнений. Чтобы решить систему уравнений, необходимо задать Е. Ответы, полученные при решении этой
системы уравнений, дадут оптимальные веса, минимизирующие дисперсию прибыли всего портфеля для выбранного уровня Е.
Допустим, мы хотим найти решение для Е = 0,14, что соответствует прибыли в 14%. Подставив в матрицу 0,14 для Е и нули для переменных L1 и L2 в первых двух строках, мы получим следующую матрицу: