Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров — страница 52 из 66

X1X2Х3X4L1L2Ответ
0,0950,130,210,085000,14
1111001
0,1- 0,02370,0100,09510
- 0,02370,250,07900,1310
0,010,0790,400,2110
00000,08510

Необходимо найти N + 2 неизвестных с помощью N + 2 уравнений.


Решение систем линейных уравнений с использованием матриц-строк.

Многочлен — это алгебраическое выражение, которое является суммой опреде­ленного количества элементов. Многочлен с одним элементом называется одно­членом, с двумя элементами — двучленом, с тремя — трехчленом и т.д. Выраже­ние 4 * А ^ 3 + А ^ 2 +А+2 является многочленом, имеющим четыре члена. Члены отделены знаком (+).

Многочлены имеют различные степени. Степень многочлена определяется зна­чением наибольшей степени любого из элементов. Степенью элемента является сумма показателей переменных, содержащихся в элементе. Показанное выше вы­ражение является многочленом третьей степени, так как элемент 4 * А^ 3 имеет третью степень, и это наивысшая степень среди всех элементов многочлена. Если бы элемент был равен 4*A^З*B^62*C, мы бы получили многочлен шестой степени, так как сумма показателей переменных (3+2+1) равна 6.

Многочлен первой степени называется также линейным уравнением и графи­чески задается прямой линией. Многочлен второй степени называется квадрат­ным уравнением и на графике представляет собой параболу. Многочлены третьей, четвертой и пятой степени называются соответственно кубическим уравнением, уравнением четвертой степени, уравнением пятой степени и т.д. Графики много­членов третьей степени и выше довольно сложны. Многочлены могут иметь лю­бое число элементов и любую степень, мы будем работать только с линейными уравнениями, т.е. многочленами первой степени. Решить систему линейных уравнений можно с помощью процедуры Гаусса-Жордана, или, что то же самое, метода гауссовского исключения. Чтобы использовать этот метод, мы должны сначала создать расширен­ную матрицу, объединив матрицу коэффициентов и столбец свободных чле­нов. Затем следует произвести элементарные преобразования для получения единичной матрицы. С помощью элементарных преобразований мы получаем более простую, но эквивалентную первоначальной, матрицу. Элементарные преобразования производятся посредством построчных операций (мы опи­шем их ниже). Единичная матрица является квадратной матрицей коэффициентов, где все элементы равны нулю, кроме диагональной линии элементов, которая начинает­ся в верхнем левом углу. Для матрицы коэффициентов «шесть на шесть» единич­ная матрица будет выглядеть следующим образом:

10000о
01000о
00100о
00010о
00001о
0000о1

Матрица, где число строк равно числу столбцов, называется квадратной матри­цей. Благодаря обобщенной форме задачи минимизации V для данного Е, мы все­гда будем иметь дело с квадратными матрицами коэффициентов. Единичная матрица, полученная с помощью построчных операций, эквива­лентна первоначальной матрице коэффициентов. Ответы для нашей системы уравнений можно получить из крайнего правого вектора-столбца. Единица в пер­вой строке единичной матрицы соответствует переменной X,, поэтому значение на пересечении крайнего правого столбца и первой строки будет ответом для X1 Таким же образом на пересечении крайнего правого столбца и второй строки со­держится ответ для Х2 так как единица во второй строке соответствует Х2 Ис­пользуя построчные операции, мы можем совершать элементарные преобразова­ния в первоначальной матрице, пока не получим единичную матрицу. Из единич­ной матрицы можно получить ответы для весов X1 ... ХN—компонентов портфеля. Найденные веса дадут портфель с минимальной дисперсией V для дан­ного уровня ожидаемой прибыли Е[26].

.

Можно проводить три типа построчных операций:

1. Поменять местами любые две строки.

2. Умножить любую строку на ненулевую постоянную.

3. Любую строку умножить на ненулевую постоянную и прибавить к любой другой строке.

С помощью этих трех операций мы попытаемся преобразовать исходную матрицу коэффициентов в единичную матрицу

В расширенной матрице проведем элементарное преобразование номер 1, ис­пользуя правило номер 2 построчных операций. Мы возьмем значение на пересече­нии первой строки и первого столбца (оно равно 0,095) и преобразуем его в едини­цу. Для этого умножим первую строку на 1/0,095. В результате, значение на пересе­чении первой строки и первого столбца станет равно единице. Остальные значения в первой сроке изменятся соответствующим образом.

Проведем элементарное преобразование номер 2. Для этого задействуем прави­ло номер 3 построчных операций (для всех строк, кроме первой). Предварительно для всех строк проведем элементарное преобразование номер 1, преобразовав чис­ло, стоящее в первом столбце каждой строки, в единицу. Затем все числа матрицы, кроме чисел первой строки, умножим на -1. После этого можно перейти к непос­редственному применению правила номер 3. Для этого прибавим первую строку к каждой строке матрицы: первое число первой строки прибавим к первому числу второй строки, второе число первой строки ко второму числу второй строки и так далее. После этого преобразования мы получим нули в первом столбце (во всех строках, кроме первой).

Теперь первый столбец уже является столбцом единичной матрицы. С помо­щью элементарного преобразования номер 3, используя правило номер 2 пост­рочных операций, преобразуем значения на пересечении второй строки и второго столбца в единицу. Посредством элементарного преобразования 4, используя правило номер 3 построчных операций, преобразуем в нули значения второго столбца (для всех строк, кроме второй).

Таким образом, с помощью правила номер 2 и правила номер 3 построчных операций мы преобразуем значения по диагонали в единицы и получим единич­ную матрицу. Столбец с правой стороны будет содержать решение.

Интерпретация результатов

После того как найдена единичная матрица, следует интерпретировать получен­ные результаты. В данном случае при наличии входных данных об ожидаемых прибылях и дисперсии прибылей по всем рассматриваемым компонентам, при наличии коэффициентов линейной корреляции каждой пары компонентов и ожидаемой отдаче 14% наше решение является оптимальным. Слово «оптималь­ный» означает, что полученное решение дает самую низкую дисперсию при ожи­даемой прибыли 14%. Мы можем определить это значение дисперсии, но сначала интерпретируем результаты.

Первые четыре значения, от X1 до Х4 дают нам веса, т.е. доли инвестируемых средств, для получения оптимального портфеля с 14%-ой ожидаемой прибылью. Нам следует инвестировать 12,391% в Toxico, 12,787% в Incubeast, 38,407% в LA Garb и 36,424% в сберегательный счет. Если мы хотим инвестировать 50 000 дол­ларов, то получим:


АкцияПроцент(* 50000 =) сумма инвестиций
Toxico0,12391$6195,50
Incubeast0,12787$6393,50
LA Garb0,38407$19 203,50
Сберегательный счет0,36424$18212,00

Таким образом, в Incubeast мы бы инвестировали 6393,50 доллара. Теперь допус­тим, что Incubeast котируется по цене 20 долларов за акцию, т.е. следует купить 319,675 акции (6393,5 / 20). На самом деле мы не можем купить дробное число акций, поэтому купим либо 319, либо 320 акций. Следует также отметить, что не­большой лот из 19 или 20 акций, остающийся после покупки первых 300 акций, будет стоить дороже. Нестандартные, малые лоты обычно стоят несколько доро­же, поэтому мы переплатим за 19 или 20 акций, а это коснется ожидаемой прибы­ли по нашей позиции в Incubeast и в свою очередь затронет оптимальную комби­нацию портфеля. В некоторых случаях следует ограничиться только стандартным лотом (в на­шем случае — это 300 акций). Как видите, необходимо учитывать некоторый коэффициент ухудшения. Мы можем определить оптимальный портфель с точ­ностью до дробной части акции, но реальная торговля все равно внесет свои коррективы. Естественно, чем больше ваш счет, тем ближе будет реальный портфель к тео­ретическому. Допустим, вместо 50 000 долларов вы оперируете пятью миллиона­ми долларов. Вы хотите инвестировать 12,787% в Incubeast (если речь идет только об этих четырех инвестиционных альтернативах) и поэтому будете инвестиро­вать 5 000 000*0,12787 =$639 350. При цене 20 долларов за акцию вы бы ку­пили 639350/20=31967,5 акций. Учитывая круглый лот, вы купите 31900 акций, отклоняясь от оптимального значения примерно на 0,2%. Когда для инве­стирования у вас есть только 50 000 долларов, вы купите 300 акций вместо опти­мального количества 319,675 и таким образом отклонитесь от оптимального зна­чения примерно на 6,5%.