Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров — страница 55 из 66

(7.06б) AHPR - 1 = V

(7.06в) AHPR-V=1

(7.06г) AHPR=V+1

Необходимо сделать небольшое замечание по геометрическому оптимально­му портфелю. Дисперсия в портфеле в общем случае имеет положительную корреляцию с наихудшим проигрышем. Более высокая дисперсия обычно со­ответствует портфелю с более высоким возможным проигрышем. Так как гео­метрический оптимальный портфель является портфелем, для которого Е и V равны (при E=AHPR- 1), мы можем допустить, что геометрический опти­мальный портфель будет иметь высокие проигрыши. Фактически, чем боль­ше GHPR геометрического оптимального портфеля (т.е. чем больше зараба­тывает портфель), тем больше может быть его текущий проигрыш (откат по балансу счета), так как GHPR положительно коррелирован с AHPR. Здесь мы видим некий парадокс. С одной стороны нам следует использовать геометри­ческий оптимальный портфель, с другой — чем выше среднее геометрическое портфеля, тем большими будут откаты по балансу счета в процентном выра­жении. Мы знаем также, что при диверсификации следует выбирать порт­фель с наивысшим средним геометрическим, а не с минимальным проигры­шем, но эти величины стремятся в противоположных направлениях! Геомет­рический оптимальный портфель — это портфель, который расположен в точке, где линия, прочерченная из (0, 0) с наклоном 1, пересекает эффектив­ную границу AHPR.

Рисунок 7-2 показывает эффективные границы на основе одной сделки. Мы можем преобразовать геометрическое среднее HPR в TWR с помощью уравнения:

(7.07) GTWR = GHPR^ N,

где GTWR = значение вертикальной оси, соответствующее данному GHPR после N сделок;

N - число сделок, которые мы хотим использовать.


Рисунок 7-3 Эффективная граница с реинвестированием и без реинвестирования

Рисунок 7-4 Эффективная граница с реинвестированием и без реинвестирования


Пусть нашей целью будет AHPR при значении V, которое соответствует геометричес­кому оптимальному портфелю. В знаменателе (2.09а) мы используем среднее геомет­рическое геометрического оптимального портфеля. Теперь мы можем определить, сколько сделок необходимо для того, чтобы привести наш геометрический опти­мальный портфель к одной сделке арифметического портфеля:


N=ln(l,031)/ln(l,01542) =0,035294/0,0153023 = 1,995075

Таким образом, можно ожидать, что через 1,995075, или приблизительно через 2 сделки, оптимальное GHPR достигнет соответствующего (при том же V) AHPR для одной сделки. Здесь возникает проблема, которая заключается в том, что ATWR должно отражать тот факт, что прошли две сделки. Другими словами, когда GTWR приближается к ATWR, ATWR двигается вверх, хотя и с постоянной скоростью (в отличие от GTWR, которое ускоряется). Можно решить эту проблему с по­мощью уравнений (7.07) и (7.08) для расчета геометрического и арифметичес­кого TWR:

Так как мы знаем, что, когда N = 1, G всегда меньше А, можно перефразировать вопрос: «При скольких N G будет равно А?» Математически это будет выглядеть таким образом:

что можно представить следующим образом:

или

или

N в уравнениях с (7.10а) по (7. 10г) представляет собой количество сделок, кото­рое необходимо для того, чтобы геометрическое HPR стало равно арифметичес­кому. Все три уравнения эквивалентны. Решение можно получить методом ите­раций. Зная для нашего геометрического оптимального портфеля GHPR= 1,01542 и соответствующее AHPR= 1,031 и решая любое уравнение с (7.10а) по (7. 10г), мы находим, что N = 83,49894. Таким образом, после того, как пройдет 83,49894 сделки, геометрическое TWR догонит арифметическое. Полу­ченный результат справедлив для тех TWR, которые соответствуют координате дисперсии геометрического оптимального портфеля.Так же, как и AHPR, GHPR имеет свою линию CML. Рисунок 7-5 показывает как AHPR, так и GHPR с линиями CML, рассчитанными на основе безрисковой ставки.

Рисунок 7-5AHPR, GHPR и их линии CML

Зная CML для AHPR, можно рассчитать CML для GHPR следующим образом:

CMLG = координата Е (по вертикали) линии CML для GHPR при данной координате V, соответствующей Р;

CMLA= координата Е (по вертикали) линии CML для AHPR при данной координате V, соответствующей Р;

Р = процент в касательном портфеле, рассчитанный из (7.02);

VT = координата дисперсии касательного портфеля.

Следует иметь в виду, что для данной безрисковой ставки касательный портфель и геометрический оптимальный портфель в общем случае не одинаковы. Портфели будут идентичными при выполнении следующего равенства:

(7.12) RFR=GHPROPT-1,

где RFR = безрисковая ставка;

GHPROPT = среднее геометрическое HPR геометрического оптималь­ного портфеля, т.е. координата Е портфеля на эффектив­ной границе.

Только когда разность GHPR геометрического оптимального портфеля и еди­ницы равна безрисковой ставке, геометрический оптимальный портфель и ка­сательный портфель будут одинаковыми. Если RFR > GHPROPT - 1, тогда гео­метрический оптимальный портфель будет слева (т.е. иметь меньшую диспер­сию, чем касательный портфель). Если RFR < GHPROPT - 1, тогда касательный портфель будет слева (т.е. иметь меньшую дисперсию, чем геометрический оп­тимальный портфель). Во всех случаях касательный портфель, конечно же, ни­когда не будет иметь более высокое GHPR, чем геометрический оптимальный портфель.

Отметьте также, что точки касания CML к GHPR и CML к AHPR имеют одну координату SD. Мы можем использовать уравнение (7.01а) для поиска касатель­ного портфеля GHPR, заменив в (7.01а) AHPR на GHPR. В результате получится следующее уравнение:

где МАХ{}= максимальное значение;

GHPR = геометрическое среднее HPR, т.е. координата Е данного портфеля на эффективной границе;

SD = стандартное отклонение HPR, т.е. координата SD данного портфеля на эффективной границе;

RFR = безрисковая ставка.

Неограниченные портфели

В этом разделе мы увидим, что можно поднять прибыли выше линии GCML, если снять ограничение на сумму весов. Давайте вернемся к геометрическим оп­тимальным портфелям. Если мы попробуем составить геометрический опти­мальный портфель из наших четырех рыночных систем — Toxico, Incubeast, LA Garb и сберегательного счета, то с помощью уравнений с (7.0ба) по (7.06г) най­дем, что он является таковым при Е, равном 0,1688965, и V, равном 0,1688965. Среднее геометрическое такого портфеля будет равно 1,094268, а состав портфе­ля будет иметь вид:

Toxico 18,89891%

Incubeast 19,50386%

LA Garb 58,58387%

Сберегательный счет 0,03014%

При решении уравнений с (7.06а) по (7.06г) необходимо использовать метод ите­раций, т.е. выбирать тестируемое значение для Е и решать матрицу для этого Е. Если полученное значение дисперсии больше значения Е, это означает, что тес­тируемое значение Е слишком высокое и в следующей попытке следует его пони­зить. Вы можете определить дисперсию портфеля, используя одно из уравнений с (6.06а) по (6.06г). Повторяйте процесс, пока не будет выполняться любое из ра­венств с (7.06а) по (7.06г). Таким образом вы получите геометрический оптималь­ный портфель (отметьте, что все рассмотренные портфели на эффективной гра­нице AHPR или на эффективной границе GHPR определяются с учетом того, что сумма весов равна 100%, или 1,00). Вспомните уравнение (6.10), используемое в первоначальной расширенной матрице для поиска оптимальных весов портфеля, уравнение отражает тот факт, что сумма весов равна 1:

где N = количество ценных бумаг, составляющих портфель;

X. = процентный вес ценной бумаги L Уравнение также можно представить следующим образом:

Мы можем найти неограниченный оптимальный портфель, если левую часть этого уравнения приравнять к числу больше 1. Для этого добавим еще одну рыночную систему, называемую беспроцентным вкладом (non-interest-bearing cash (NIC)), в первоначальную расширенную матрицу Данная рыночная система будет иметь дневное среднее арифметическое HPR= 1,0, а стандартное отклонение, диспер­сию и ковариацию дневных HPR равными 0. Коэффициенты корреляции NIC с любой другой рыночной системой всегда равны 0.

Теперь установим ограничение суммы весов на некоторое произвольное чис­ло, большее единицы. Хорошим первоначальным значением будет количество используемых рыночных систем (без NIC), умноженное на три. Так как мы имеем 4 рыночные системы (не учитывая NIC), то ограничим сумму весов 4*3=12.

Отметьте, что мы просто устанавливаем ограничение на произвольное значе­ние, большее единицы. Разность между этим выбранным значением и суммой полученных весов будет весом системы NIC.

На самом деле, мы не собираемся инвестировать в NIC. Это просто дополни­тельная переменная, с помощью которой мы создадим матрицу для получения

неограниченных весов рыночных систем. Теперь возьмем параметры наших че­тырех рыночных систем из главы 6 и добавим NIC:

Ковариации рыночных систем, включая NIC, будут следующими:

Добавив NIC, мы получим 5 рыночных систем, и обобщенная форма первона­чальной расширенной матрицы будет выглядеть следующим образом:

неограниченных весов рыночных систем. Теперь возьмем параметры наших че­тырех рыночных систем из главы 6 и добавим NIC:

ИнвестицияОжидаемая прибыль в виде HPRОжидаемое стандартное отклонение прибыли
Toxico1,0950,316227766
Incubeast Corp.1,130,5
LA Garb1,210,632455532
Сберегательный счет1,0850
Беспроцентный вклад1,000

Ковариации рыночных систем, включая NIC, будут следующими:

Т