Теперь допустим, что оптимальное f для рыночной системы А соответствует 1 контракту на каждые 2500 долларов на балансе счета. В первый день активный баланс равен 50 000 долларов, и вы можете торговать 20 контрактами. Если бы вы использовали стратегию, основанную на f/2, то в первый день задействовали это же количество контрактов ($2500/0,5), но при общем балансе счета в 100 000 долларов. Поэтому при стратегии, основанной на f/ 2, в этот день следует также торговать 20 контрактами. Когда изменяется баланс, число контрактов, которыми следует торговать, тоже изменяется. Предположим, вы заработали 5000 долларов, увеличив общий баланс счета до 105 000 долларов. При стратегии половинного f вам следует торговать 21 контрактом. Однако при использовании метода разделения баланса вы должны вычесть постоянную неактивную сумму 50 000 долларов из общего баланса 105 000 долларов. В результате вы получите активную часть баланса в 55 000 долларов и уже на основе этого определите количество контрактов при уровне оптимального f (1 контракт на каждые 2500 долларов на счете). Таким образом, при использовании метода разделения счета вам следует торговать 22 контрактами.
Похожая ситуация возникает и при падении баланса вашего счета. Метод разделения счета уменьшает количество контрактов с большей скоростью, чем это делает стратегия половинного f. Допустим, вы потеряли 5000 долларов в первый день торговли и общий баланс счета уменьшился до 95 000 долларов. При стратегии дробного f вам следует торговать 19 контрактами ($95 000/$5000). Однако при использовании метода разделения баланса активный счет будет равен 45 000 долларов, и вам следует торговать 18 контрактами ($45 000/$2500).
Отметьте, что при использовании метода разделения счета доля оптимального f изменяется вместе с балансом. Сначала определяется доля баланса, которая будет задействована в торговле (в нашем примере мы использовали первоначальную долю 0,5). При повышении баланса доля оптимального f повышается, приближаясь в пределе к 1, когда баланс счета стремится к бесконечности. При падении баланса доля f приближается в пределе к 0, а общий баланс счета при этом стремится к неактивной части. Тот факт, что страхование портфеля встроено в метод разделения баланса, является огромным преимуществом, и об этой особенности мы еще поговорим позже. Так как метод разделения счета использует изменяющееся дробное f, мы назовем такой подход стратегией динамического дробного f, в противоположность стратегии статического дробного f.
Стратегия статического дробного f смещает вас по линии CML влево от оптимального портфеля, если вы используете ограниченный портфель, и при любых изменениях баланса счет будет оставаться у этой точки на линии CML. Если вы используете неограниченный портфель (что является лучшим подходом), то будете на эффективной границе для портфелей с неограниченной суммой весов (так как нет линий CML для неограниченных портфелей) слева от оптимального портфеля. Когда баланс счета изменяется, вы остаетесь в той же точке на неограниченной эффективной границе. Если речь идет об использовании динамического дробного f для ограниченного или неограниченного портфеля, вы начинаете у тех же точек, но, когда баланс счета повышается, портфель сдвигается вправо вверх, а когда баланс понижается, портфель сдвигается влево вниз. Правая граница находится у пика кривой, где доля f равна 1, а левая — у точки, где доля f равна 0.
При размещении активов с помощью метода статического f дисперсия не меняется, так как используемая доля оптимального f постоянна, но в случае с динамическим дробным f дисперсия — переменная величина. В этом случае, когда баланс счета увеличивается, увеличивается также и дисперсия, поскольку возрастает используемая доля оптимального f. Верхней границы дисперсия достигает при полном f, когда баланс счета приближается к бесконечности. При падении баланса счета дисперсия быстро уменьшается по мере приближения используемой доли оптимального f к нулю, когда общий баланс счета приближается к балансу неактивного подсчета, и в этом случае нижняя граница дисперсии равна нулю.
Метод динамического дробного f аналогичен методу, основанному на полном оптимальном f, когда первоначальный размер торгового счета равен активной части баланса. Итак, есть два способа размещения активов: с помощью статического дробного и с помощью динамического дробного f. Динамическое дробное f дает динамическую дисперсию, что является недостатком, но такой подход также обеспечивает страхование портфеля (об этом позднее). Хотя эти два метода имеют много общего, они все-таки серьезно отличаются. Какой же из них лучше? Рассмотрим систему, где дневное среднее арифметическое HPR= 1,0265. Стандартное отклонение дневных HPR составляет 0,1211, поэтому среднее геометрическое равно 1,019. Теперь посмотрим на результаты торговли при статических дробных оптимальных 0, If и 0,2f. Для этого используем уравнения с (2.06) по (2.08):
где FRAC = используемая дробная часть оптимального f;
AHPR = среднее арифметическое HPR при оптимальном f;
SD = стандартное отклонение HPR при оптимальном f;
FAHPR = среднее арифметическое HPR при дробном f;
FSD = стандартное отклонение HPR при дробном f;
FGHPR = среднее геометрическое HPR при дробном f. Результаты будут следующими:
Полное f | 0,2 f | 0,1 f | |
AHPR | 1,0265 | 1,0053 | 1,00265 |
SD | 0,1211 | 0,02422 | 0,01211 |
GHPR | 1,01933 | 1,005 | 1,002577 |
Теперь вспомним уравнение (2.09а) — ожидаемое время для достижения определенной цели:
где N = ожидаемое количество сделок для достижения определенной цели;
Цель = цель в виде множителя первоначального счета, т.е. TWR;
1n() = функция натурального логарифма.
Сравним торговлю при статическом дробном 0,2f при среднем геометрическом 1,005 с торговлей, основанной на стратегии динамического дробного 0,2f (первоначальный активный счет составляет 20% от общего) при дневном среднем геометрическом 1,01933. Время (так как средние геометрические имеют дневные значения, время измеряется в днях), требуемое для удвоения счета при статическом дробном f, можно найти с помощью уравнения (2.09а):
1n(2)/1n( 1,005) =138,9751
Для удвоения счета при динамическом дробном f значение цели надо приравнять шести, потому что если вы располагаете 20% активньм балансом и начинаете с общего счета 100 000 долларов, то первоначально в работе будет 20 000 долларов. Ваша задача увеличить активный баланс до 120 000 долларов. Так как неактивный баланс остается на уровне 80 000 долларов, то на общем счете в итоге должно оказаться 200 000 долларов. Таким образом, рост счета с 20 000 долларов до 120 000 долларов соответствует TWR = 6, поэтому для удвоения счета при динамическом дробном 0,2 f Цель должна быть равна 6.
ln(6) / 1n(1,01933) = 93,58634
Отметьте, что для динамического дробного f необходимо 93 дня вместо 138 дней для статического дробного f. Рассмотрим торговлю при 0, If. Число дней, ожидаемое для удвоения баланса счета при статическом методе, равно:
ln(2) / 1n(1,002577) = 269,3404
Сравните с удвоением баланса счета при динамическом дробном 0, 1 f. Вам необходимо достичь TWR= 11, поэтому число дней при стратегии динамического дробного f равно:
1n(11)/1n(1,01933)= 125,2458
Для удвоения баланса счета при 0, If необходимо 269 дней при статическом варианте и 125 дней при динамическом варианте. Чем меньше доля/, тем быстрее динамический метод «обгонит» статический метод.
Посмотрим, сколько времени потребуется, чтобы при 0,2f увеличить счет в три раза. Число дней для статического метода будет равно:
1n(3)/1n( 1,005)= 220,2704 Сравним с динамическим методом, при котором:
1n(11)/1n(1,01933)= 125,2458 дней Чтобы получить прибыль в 400% (TWR = 5) при статическом 0,2f:
ln(5) / 1n( 1,005) = 322,6902 дней при динамическом подходе:
ln(21) / 1n(1,01933) = 159,0201 дней
Обратите внимание, что в этом примере при динамическом подходе для достижения цели 400% необходимо почти в два раза меньше времени, чем при статическом подходе. Однако если вы возьмете число дней, за которое увеличился баланс счета при статическом подходе (322,6902 дня), и подставите его в формулу расчета TWR для динамического метода, то получите:
TWR = 0,8 + (1,01933^ 322,6902) * 0,2 = 0,8 + 482,0659576 * 0,2 = 97,21319
Выигрыш составит более 9600%, в то время как статический подход даст лишь 400%.
Теперь мы можем изменить уравнение (2.09а), приспособив его как к статической, так и к динамической стратегиям дробного f, для определения ожидаемого времени, необходимого для достижения цели, выраженной TWR. Для статического дробного f мы получим уравнение (2.096):
(2.096) N=ln(Цель)/ln(A),
где N = ожидаемое число сделок для достижения определенной цели;
Цель = цель в виде множителя начального счета, т.е. TWR;
А = измененное среднее геометрическое, полученное из уравнения (2.08), при данном статическом дробном f;
1п() = функция натурального логарифма. Для динамического дробного f получим уравнение (2.09в):
(2.09в) N = 1п(((Цель - 1) / ACTV) + 1) / 1п(Среднее геометрическое), где N = ожидаемое число сделок для достижения определенной цели;
Цель = цель в виде множителя начального счета, т.е. TWR;
ACTV = доля активного счета;
Среднее геометрическое = исходное среднее геометрическое (оно не меняется, как в случае с уравнением (2.096));
ln() = функция натурального логарифма.
Проиллюстрируем уравнение (2.09в). Допустим, нам надо определить время, необходимое для удвоения счета (т.е. TWR = 2), при активном счете 10% от общего счета и среднем геометрическом 1,01933.