Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров — страница 9 из 66

Уравнение (1.04) можно прокомментировать следующим образом. Если HPR = 0, то вы полностью выйдете из игры, так как все, что умножается на ноль, равно нулю. Любая большая проигрышная сделка будет иметь самое неблагоприятное влияние на TWR, так как эта функция мультипликативна, а не аддитивна.

Как лучше всего реинвестировать

До этого момента речь шла о реинвестировании 100% средств со счета. И хотя нам известно, что для максимизации потенциально прибыльной системы мы должны реинвестировать, использование в каждой сделке 100% капитала вряд ли разумно.

Рассмотрим игру (50/50) с броском монеты. Предположим, вам платят 2 дол­лара, если вы выигрываете, и теряете 1 доллар, если проигрываете. Математичес­кое ожидание составляет 0,5. Другими словами, следует ожидать выигрыша 50 центов в среднем за бросок. Это верно для первого броска и для всех последую­щих бросков при условии, что вы не увеличиваете сумму ставки. Но в процессе независимых испытаний именно это и следует делать. Когда вы выигрываете, то должны увеличивать ставку при каждом броске.

Допустим, вы начинаете игру с одного доллара, выигрываете при первом броске и зарабатываете два доллара. При следующем броске вы также ставите весь счет (3 доллара), однако на этот раз проигрываете и теряете 3 доллара. Вы проиграли первоначальную сумму в 1 доллар и 2 доллара, которые ранее выиг­рали. Если вы выигрываете при последнем броске, то зарабатываете 6 долларов, так как сделали 3 ставки по 1 доллару. Дело в том, что если вы используете 100% счета, то выйдете из игры, как только столкнетесь с проигрышем, что является неизбежным событием. Если бы мы могли переиграть предыдущий сценарий и вы делали бы ставки без реинвестирования, то выиграли бы 2 доллара при пер­вой ставке и проиграли 1 доллар при второй. Теперь ваша чистая прибыль 1 дол­лар, а счет равен 2 долларам. Где-то между этими двумя сценариями находится оптимальный выбор ста­вок при положительном ожидании. Однако сначала мы должны рассмотреть оп­тимальную стратегию ставок для игры с отрицательным ожиданием. Когда вы знаете, что игра имеет отрицательное математическое ожидание, то лучшей ставкой будет отсутствие ставки. Помните, что нет стратегии управления день­гами, которая может превратить проигрышную игру в выигрышную. Однако если вы должны сделать ставку в игре с отрицательным ожиданием, то наилуч­шей стратегией будет стратегия максимальной смелости. Другими словами, вам надо сделать как можно меньше ставок (в противоположность игре с положи­тельным ожиданием, где следует ставить как можно чаще). Чем больше попы­ток, тем больше вероятность, что при отрицательном ожидании вы проиграете. Поэтому при отрицательном ожидании меньше возможности для проигрыша, если длина игры укорачивается (то есть когда число попыток приближается к 1). Если вы играете в игру, где есть шанс 49% выиграть 1 доллар и 51% проиграть 1 доллар, то лучше всего сделать только одну попытку. Чем больше ставок вы бу­дете делать, тем больше вероятность, что вы проиграете (с вероятностью проиг­рыша, приближающейся к уверенности, когда игра приближается к бесконеч­ности). Это не означает, что вы достигаете положительного ожидания при од­ной попытке, но вы, по крайней мере, минимизируете вероятность проигрыша, совершая только одну попытку. Теперь вернемся к игре с положительным ожиданием. Мы решили в начале этой дискуссии, что в любой сделке количество контрактов, которое открыва­ет трейдер, определяется фактором f (число между 0 и 1), что представляет со­бой количество контрактов, зависящее как от предполагаемого проигрыша

в следующей сделке, так и от общего баланса счета. Если вы знаете, что обладаете преимуществом при N ставках, но не знаете, какие из этих N будут выигрышами (и на какую сумму), а какие из них будут проигрышами (и на какую сумму), то лучше всего на большом отрезке времени рисковать одной и той же долей вашего счета. Этот метод, основанный на использовании фиксированной доли вашего счета, и является лучшей системой ставок. Если в ваших сделках есть зависимость, где выигрыши порождают выигрыши, а проигрыши порождают проигрыши, или на­оборот, тогда все равно лучше ставить определенную долю вашего общего счета, но эта доля уже не будет фиксированной. В этом случае доля счета должна отражать действие зависимости (если вы не «отпугнули» зависимость от системы, создав си­стемные правила для ее использования).

«Подождите, — скажете вы. — Разве не бесполезны все эти системы ста­вок? Разве они преодолевают преимущество казино? Они только отдаляют момент полного разорения!» Это абсолютная правда для ситуации с отрица­тельным математическим ожиданием. Когда ожидание положительное, трейдер/азартный игрок стоит перед вопросом, как наилучшим образом ис­пользовать это положительное ожидание.


Торговля оптимальной фиксированной долей

Все, о чем мы говорили выше, подготовило основу для этого раздела. Мы теперь знаем, что перед тем, как обсуждать величину ставок на данном рынке или в сис­теме, надо понять, есть ли у вас положительное математическое ожидание. Мы увидели, что так называемая «хорошая система» (когда математическое ожидание имеет положительное значение) фактически может быть не такой уж и хорошей при реинвестировании доходов, если реинвестировать слишком высокий про­цент выигрышей по отношению к разбросу результатов системы. Если в действи­тельности есть положительное математическое ожидание, каким бы маленьким оно ни было, используйте его с максимальной отдачей. При независимых испы­таниях это достигается посредством реинвестирования фиксированной доли ва­шего общего счета.[2]

Как нам найти это оптимальное f? В последние десятилетия азартными иг­роками использовалось множество систем, самая известная и точная из которых — «Система ставок Келли, являющаяся продолжением математической идеи, выдвинутой в начале 1956 года Джоном Л. Келли младшим.

Из критерия Келли следует, что мы должны использовать фиксированную долю счета (f), которая максимизирует функцию роста G (f):

где f = оптимальная фиксированная доля;

Р = вероятность выигрышной ставки или сделки;

В = отношение выигранной суммы по выигрышной ставке к про­игранной сумме по проигрышной ставке;

1n() = функция натурального логарифма.


Оказывается, что для систем с двумя возможными исходами это оптимальное f можно довольно легко найти с помощью формул Келли.

Формулы Келли


Начиная с конца 1940-х годов, инженеры компании Bell System работали над про­блемой передачи данных по международным линиям. Проблема, стоящая перед ними, заключалась в том, что линии были подвержены случайному, неизбежному «шуму», который мешал передаче данных. Инженерами компании было предло­жено несколько довольно оригинальных решений. Как это ни странно, наблюда­лись большие сходства между проблемой передачи данных и проблемой геомет­рического роста, которая относится к управлению деньгами в азартных играх (так как обе проблемы являются продуктом случайной среды). Так появилась первая формула Келли.

Первое уравнение выглядит следующим образом:

или

(1.09б) f=P-Q,

где f = оптимальная фиксированная доля;

Р = вероятность выигрышной ставки или сделки;

Q = вероятность проигрыша (1 - Р).

Обе формы уравнения (1.09) эквивалентны.

Уравнения (1.09а) или (1.096) для оптимального f дадут правильный ответ при условии, что выигрыши и проигрыши будут одинаковые по величине. В ка­честве примера рассмотрим следующий поток ставок:

Есть 10 ставок, 6 из них выигрышных, отсюда:

f=(0,6*2)-l =1,2-1=0,2

Если выигрыши и проигрыши не были бы одинакового размера, то эта формула не дала бы правильного ответа. Примером служит бросок монеты в игре «два к одному», где все выигрыши — 2 единицы, а проигрыши — 1 единица.В этом слу­чае формула Келли будет выглядеть следующим образом:

где t = оптимальная фиксированная доля;

Р = вероятность выигрышной ставки или сделки;

В = отношение выигранной суммы по выигрышной ставке к проигран­ной сумме по проигрышной ставке.

В нашем примере с броском монеты в игре «два к одному»:

f=((2+l)*0,5-1)/2 =(3*0,5-1)/2 =0,5/2 = 0,25

Эта формула даст правильный ответ для оптимального f при условии, что все вы­игрыши между собой всегда одинаковы и все проигрыши между собой всегда оди­наковы. Если это не так, формула не даст правильного ответа.

Формулы Келли применимы только к результатам, которые имеют распре­деление Бернулли (распределение с двумя возможными исходами). Торговля, к сожалению, не так проста. Применение формул Келли к иному распределе­нию является ошибкой и не даст нам оптимального f. Более подробно о распреде­лении Бернулли рассказано в приложении В.


Поиск оптимального f с помощью среднего геометрического.


В реальной торговле размер проигрышей и выигрышей будут постоянно меняться. Поэтому формулы Келли не могут дать нам правильное оптимальное f. Как корректно с математической точки зрения найти оптимальное f, которое по­зволит нам определить количество контрактов для торговли? Попытаемся ответить на этот вопрос. Для начала мы должны изменить формулу для поиска HPR, включив в нее f:

где -Сделка= прибыль или убыток в этой сделке (с проти­воположным знаком, чтобы убыток стал по­ложительным числом, а прибыль — отрица­тельным);

Наибольший проигрыш = наибольший убыток за сделку (это всегда отрица­тельное число).

TWR — это произведение всех HPR, а среднее геометрическое (G) — это корень N-й степени TWR.

где - Сделкаi = прибыль или убыток по сделке i (с противо­положным знаком, чтобы убыток был поло­жительным числом, а прибыль — отрицательным);

Наибольший проигрыш = результат сделки, которая дала наиболь­ший убыток (это всегда должно быть от­рицательное число);

N = общее количество сделок;