лияние: он направил мои интересы в области, которые я считал относительно «безопасными», и постоянно подтачивал энтузиазм и решимость, с которой я занимался своими исследованиями. Мой опыт, вероятно, разделили и другие математики, небезразличные к тому, какое место их собственная научная деятельность занимает в этом мире в общем контексте бытия человека, интересующего, страдающего и созидающего.
Коль скоро о степени обоснованности математики мы намереваемся судить по ее приложениям, сразу же возникает вопрос: насколько эффективна математика в этом отношении? Рассказывая о математике, созданной и применявшейся до XIX в., мы привели несколько примеров, доказывающих, сколь хорошо математика описывает и предсказывает явления реального мира (гл. III). Но в XIX в. математики, руководствуясь, несомненно, вескими доводами, ввели ряд понятий и теорий, не заимствованных непосредственно из природы и даже, казалось, противоречивших ей, например бесконечные ряды и неевклидовы геометрии, комплексные числа и кватернионы, необычные алгебры и бесконечные множества различной мощности, а также другие не менее странные объекты, которых мы не касались. Никаких оснований ожидать априори, что эти понятия и теории окажутся применимыми, разумеется, не было. Итак, прежде всего убедимся, что вся современная математика работает в приложениях, причем делает это великолепно.
Все величайшие достижения физики за последние сто лет — теория электромагнитного поля, теория относительности и квантовая механика — широко используют современную математику. Мы рассмотрим лишь теорию электромагнитного поля, наиболее знакомую неспециалистам. В первой половине XIX в. физики и математики провели многочисленные исследования электричества и магнетизма. Им удалось получить небольшое число математических законов, описывающих различные электрические и магнитные явления. В 60-е годы XIX в. Джеймс Клерк Максвелл поставил перед собой задачу собрать все эти разрозненные законы и выяснить, насколько они совместимы. Максвелл обнаружил, что для математической совместимости необходимо ввести в уравнения еще один член, который он назвал током смещения. Единственный физический смысл, который Максвелл мог придать току смещения, состоял в утверждении, что источник электричества (грубо говоря, проводник с током) должен быть источником электромагнитного поля (т.е. от него исходит — и распространяется в пространстве — электромагнитная, волна). Испускаемые источником электромагнитные волны имеют различные частоты. Это могут быть радиоволны, улавливаемые антеннами наших радиоприемников и телевизоров, гамма-лучи, видимый свет, инфракрасное и ультрафиолетовое излучение. Так, из чисто математических соображений Максвелл предсказал существование огромного класса ранее не известных явлений и пришел к правильному выводу об электромагнитной природе света.
Электромагнитные волны, как и гравитация (гл. III), обладают одной замечательной особенностью: мы не имеем ни малейших представлений о том, какова их физическая природа. Существование этих волн подтверждается только математикой — и только математика позволила инженерам создать радио и телевидение, которые нашим предкам показались бы поистине сказочными чудесами.
То же самое можно сказать и о всевозможных явлениях атомной и ядерной физики. Математики и физики-теоретики говорят о полях (гравитационном, электромагнитном, поле электрона и других частиц) так, словно все эти поля — «материальные» волны, которые распространяются в пространстве и вызывают различные наблюдаемые эффекты, подобно, скажем, волнам на воде, бьющим о борт судна или разбивающимся о скалы. Но все эти поля не более чем фикции. Их физическая природа нам неизвестна. Они лишь отдаленно связаны с наблюдаемыми явлениями, например c ощущениями света, звука, движения материальных тел, с радио и телевидением. Беркли некогда назвал производную призраком навсегда ушедших величин. Современная физическая теория имеет дело с призраком материи.{179} Но, формулируя математические законы, которым подчиняются фиктивные поля, не имеющие наглядных аналогов в реальности, и выводя из этих законов логические следствия, мы приходим к выводам, допускающим при надлежащем переводе на язык физики проверку c помощью чувственных восприятий.
Фиктивный характер современной науки подчеркивал еще в 1931 г. Альберт Эйнштейн:
Согласно ньютоновской системе, физическая реальность характеризуется понятиями пространства, времени, материальной точки и силы (взаимодействия материальных точек)…
После Максвелла физическая реальность мыслилась в виде непрерывных, не поддающихся механическому объяснению полей, описываемых дифференциальными уравнениями в частных производных. Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которое испытала физика со времен Ньютона…
Нарисованной мною картине чисто фиктивного характера основных представлений научной теории не придавалось особого значения в XVIII и XIX вв. Но сейчас она приобретает все большее значение, по мере того как увеличивается в нашем мышлении расстояние между фундаментальными понятиями и законами, с одной стороны, и выводами, к которым они приводят в отношении нашего опыта, с другой стороны, по мере того как упрощается логическая структура, уменьшается число логически независимых концептуальных элементов, необходимых для поддержания структуры.
Современную науку неоднократно восхваляли за то, что, дав рациональные объяснения явлений природы, она исключила духов, дьяволов, ангелов, демонов, мистические силы и анимизм. К этому необходимо добавить теперь, что, постепенно изгоняя физическое и интуитивное содержание, апеллирующее к нашему чувственному восприятию, наука исключила и материю. Теперь она имеет дело только с синтетическими, и идеальными понятиями, такими, как поля и электроны, о которых единственно, что нам известно, это управляющие ими математические законы. После длинных цепочек дедуктивных умозаключений наука сохраняет лишь небольшой, но жизненно важный контакт с чувственными восприятиями. Наука — это рационализованная фикция, и рационализована она математикой.
Выдающийся физик Генрих Герц (1857-1894), первым экспериментально подтвердивший предсказание Максвелла о том, что электромагнитные волны могут распространяться в пространстве, был настолько восхищен могуществом математики, что воскликнул: «Трудно отделаться от ощущения, что эти математические формулы существуют независимо от нас и обладают своим собственным разумом, что они умнее нас, умнее тех, кто открыл их, и что мы извлекаем из них больше, чем было в них первоначально заложено».
Роль математики в изучении природы подчеркивал Джеймс Джинс (1877-1946). В книге «Загадочная Вселенная» он утверждал: «Самый важный факт состоит в том, что все картины природы, рисуемые наукой, которые только могут находиться в согласии с данными наблюдений, — картины математические… За пределы математических формул мы выходим на свой страх и риск». Физические понятия и механизмы подсказывают, как построить математическое описание явлений, после чего, как ни парадоксально, становится ясно, что вспомогательные физические средства не более чем фантазии и что только математические уравнения надежно следуют явлениям.
Аналогичную мысль Джинс высказал и в книге «Между физикой и философией». С помощью моделей или картин, доступных нашим органам чувств, человеческий разум не в силах постичь, как функционирует природа. Нам не дано понять, что представляют собой явления, и приходится ограничиваться описанием схем явлений на математическом языке. Урожай, пожинаемый физикой, всегда состоит из набора математических формул. Подлинная сущность материальной субстанции непознаваема.
Итак, как мы видим, роль математики в современной науке отнюдь не сводится к почетным обязанностям главного инструмента познания. О математике нередко говорят, что она резюмирует и систематизирует в символах и формулах данные физических наблюдений или экспериментов, извлекая из формул дополнительную информацию, недоступную прямому наблюдению и эксперименту. Такое описание умалчивает о многом из того, что делает математика в естественных науках. Математика выражает саму суть естественнонаучных теорий, и приложения чисто математических понятий позволили в XIX-XX вв. получить гораздо более сильные и неожиданные результаты, чем это удавалось сделать в предшествующие столетия математикам, оперировавшим с математическими понятиями, непосредственно связанными с физическими явлениями. Хотя достижениями современной науки — радио, телевидением, авиацией, телефоном, телеграфом, высококачественной звукозаписывающей и звуковоспроизводящей аппаратурой, гамма-лучами, транзисторами, атомной энергией (и, к сожалению, атомными бомбами!), если говорить только о некоторых наиболее известных достижениях, — мы обязаны не только математике, роль математики намного больше и оценить ее гораздо труднее, чем вклад экспериментальной науки.
Френсис Бэкон в XVII в. скептически относился к таким теориям, как астрономические теории Коперника и Кеплера. Бэкон опасался, что философские убеждения или религиозные верования (например, тезисы о том, что господь бог стремится к простоте или что природа построена богом по плану, основанному на математических принципах) сказываются на формировании этих теорий в большей степени, чем согласие с наблюдениями или экспериментом. Отношение Бэкона к теориям, несомненно, имеет некие разумные основания, но современные математические теории доминируют в физике только потому, что они эффективны. Разумеется, согласие с наблюдениями является непременным условием принятия любой математической теории в физике.
Итак, на любой вопрос о том, работает ли математика, мы можем с уверенностью дать положительный ответ. Гораздо труднее ответить на вопрос, почему она столь эффективна. Во времена античности и много столетий спустя математики считали, что знают верные приметы того, где следует искать «золото» (математика была сводом истин о физическом мире, и заложенные в ее основу логические принципы также были абсолютными истинами), и поэтому копали энергично, с размахом и настойчиво. Им удалось добиться замечательных успехов. Но теперь-то мы знаем, что они принимали за золото какой-то совсем другой, пусть даже и не менее драгоценный, металл. Этот «металл» позволял с замечательной точностью описывать явления природы. Вопрос о том, почему он служил так хорошо, требует особого рассмотрения. Действительно, почему некая независимая, абстрактная конструкция, плод «точной» мысли, должна соответствовать физическому миру человека?