Интуитивно ясно, что, чем больше число прямоугольников, тем точнее сумма их площадей аппроксимирует площадь криволинейной фигуры. Но если остановиться на 50 или на 100 прямоугольниках, то сумма их площадей еще не будет в точности равна площади аппроксимируемой фигуры, и математикам XVII в., придумавшим этот подход к вычислению площадей, пришло в голову устремить n к бесконечности. Правда, в то время еще не было вполне ясно, что такое бесконечность. Можно ли считать бесконечность числом, и если да, то как производить арифметические действия над этим числом? Получив выражения (7) для суммы площадей n прямоугольников и обнаружив в них члены вида 1/n и 1/n2, Ферма отбросил их на том основании, что, когда n обращается в бесконечность, эти члены пренебрежимо малы. Как и при выводе производной, Ферма полагал, что строго его идею удастся доказать скорее всего с помощью метода исчерпывания, введенного Евдоксом (довольно ограниченный и весьма непростой геометрический метод, которым искусно пользовался Архимед).
Из ранних попыток вычисления площадей и объемов с помощью определенного интеграла работа Бонавентуры Кавальери заслуживает внимания по двум причинам: во-первых, она оказала большое влияние на современников Кавальери и на математиков последующих поколений и, во-вторых, довольно точно отражала типичные особенности характерного для того времени математического мышления, которое сегодня можно было бы назвать довольно смутным. Кавальери считал, что площадь фигуры, которая выглядит примерно так, как показано на рис. 6.1, состоит из бесконечно большого числа элементов; эти элементы он называл неделимыми. Вполне возможно, что неделимыми могли быть отрезки прямых. У самого Кавальери не было ясности относительно того, что именно представляют собой его неделимые. Он лишь утверждал, что если площадь фигуры разбивать на все меньшие и меньшие прямоугольники, как показано на рис. 6.3, то в конечном итоге получатся неделимые. В одной из своих книг, «Шесть геометрических упражнений» (Ехеrcitationes geometricae sex, 1647), Кавальери «объяснил», что рассматриваемая фигура состоит из неделимых, как, например, ожерелье — из бусин, ткань — из нитей и книга — из страниц. Руководствуясь столь неясным понятием, Кавальери тем не менее научился сравнивать две площади или два объема и получать правильные соотношения между двумя сравниваемыми величинами [38].
Критиков Кавальери его объяснения не удовлетворяли. Один из современников Кавальери, Пауль Гульдин (1557-1643), обвинил его в том, что он преднамеренно суживает рамки греческой геометрии, вместо того чтобы понять ее. А один из современных нам историков науки заявил, что если бы существовал особый приз за неясность, то названная работа Кавальери была бы тут вне всякой конкуренции и, безусловно, заслужила бы такую награду. Не имея возможности объяснить, как из бесконечного числа элементов (неделимых) можно составить фигуру конечной протяженности, Кавальери пытался уйти от ответа на вопрос, отказываясь дать сколько-нибудь точную интерпретацию неделимых. Иногда он в довольно туманных выражениях говорил о бесконечной сумме линий, не объясняя явно природу бесконечности. В других случаях Кавальери называл свой метод не более чем прагматическим приемом, позволяющим заменить сложный метод исчерпывания, применявшийся древними греками. По свидетельству Кеплера, приведенному в его сочинении «Новая стереометрия винных бочек» (Stereometria doliorum vinariorum, 1616) [39], Кавальери ссылался на современных ему геометров, обращавшихся с понятиями еще более свободно, чем он сам. Эти геометры, говорил он, вычисляя площади, подражают методу Архимеда, но им не удается найти тех полных доказательств, которые позволяли великому греку придать своим работам необходимую строгость. Тем не менее геометры, о которых шла речь, были довольны своими вычислениями, поскольку те приводили к полезным результатам. Встав, по существу, на ту же точку зрения, Кавальери счел, что и предложенный им метод неделимых может приводить к новым открытиям; однако, пользуясь этим методом, отнюдь не обязательно полагать, будто геометрическая фигура в самом деле состоит из бесконечно большого числа «неделимых» элементов. Метод предназначен лишь для того, чтобы установить правильные соотношения между площадями или между объемами, а эти соотношения сохраняют свою ценность и значение независимо от того, какого мнения придерживается тот или иной геометр относительно элементов, составляющих фигуру. В качестве последнего контрдовода против возражений своих критиков Кавальери указал, что концептуальные проблемы относятся к ведению философии и потому несущественны в практической работе с фигурами и телами. О строгости, заметил он, пристало заботиться философии — но не геометрии.
В защиту Кавальери выступил и Паскаль. В своих «Письмах из Деттонвиля» (1658) он утверждал, что геометрия неделимых превосходно согласуется с евклидовой геометрией: «То, что может быть доказано с помощью истинных правил неделимых, может быть также доказано со всей строгостью на манер древних». По мнению Паскаля, геометрия неделимых Кавальери и геометрия древних греков отличаются только терминологией. Метод неделимых, считал Паскаль, должен быть принят каждым математиком, претендующим на то, чтобы считаться геометром. Но и у Паскаля не было определенного мнения относительно математической строгости. Иногда он утверждал, что, подобно тому как религия ставит милосердие превыше разума, так и для получения правильных результатов необходима истинная «утонченность», а не логика, присущая геометрии. Парадоксы геометрии, проявившиеся в математическом анализе, Паскаль сравнивал с кажущимися нелепостями христианства и считал, что неделимые значат в геометрии не более чем суд мирской в сравнении с судом божьим.
Согласно Паскалю, необходимые поправки в идеи нередко вносит не разум, а душа (гл. II). В своих «Мыслях» он говорит: «Мы постигаем истину не только разумом, но и душой. Из последнего источника мы познаем первые принципы, и разум, не принимающий в этом участия, тщетно пытается сражаться с душой… На нашем знании души и инстинкта с необходимостью зиждется разум, и этим знанием он питается». Разумеется, такими рассуждениями Паскаль никак не мог помочь уяснению метода Кавальери.
Наибольший вклад в создание математического анализа внесли Ньютон и Лейбниц. Ньютон почти не занимался понятием интеграла, но интенсивно разрабатывал понятие производной. По существу, предложенный им метод вычисления производной мало чем отличался от метода Ферма. Не было у Ньютона и большей ясности относительно логического обоснования понятия производной. Математическому анализу Ньютон посвятил три работы. Кроме того, он коснулся этого вопроса в наиболее значительном из своих сочинений — «Математических началах натуральной философии», вышедших тремя изданиями. Излагая в первой работе (1669 — см. [140]) свой метод вычисления производной, Ньютон заметил, что он его скорее «кратко объяснил, чем строго доказал». При вычислении производной Ньютон воспользовался тем, что h и k — неделимые. Во второй работе (1671) Ньютон замахнулся на большее: он заявил, что изменил свою точку зрения на переменные и считает теперь необходимым рассматривать их не как дискретные, а как непрерывно изменяющиеся величины (в случае дискретных переменных величины h в конечном счете вырождаются в неделимые). Ньютон утверждал, что ему удалось избавиться от чрезмерной жесткости теории неделимых, которую он применил в первой работе. Однако внесенные Ньютоном изменения, по существу, никак не сказались на ходе вычисления производной, или, как предпочитал ее называть сам Ньютон, флюксии. И с логикой во второй работе дело обстояло ничуть не лучше, чем в первой.
В своей третьей работе по математическому анализу — «Рассуждения о квадратуре кривых» (1676) — Ньютон еще раз заявил, что отказывается от бесконечно малых величин (в конечном счете неделимых), и критически отозвался об отбрасывании членов в соотношении (3), содержащих множитель h, поскольку «в математике не следует пренебрегать даже самыми малыми ошибками». После этих предварительных замечаний Ньютон дал новое объяснение понятия «флюксия»: «Флюксии, когда приращения флюэнт [переменных] возникают во все большем числе, отличаются сколь угодно мало и сами сколь угодно малы, и если говорить точно, то они пропорциональны возникающим приращениям…». Разумеется, пользы от столь смутных объяснений было немного. Что же касается метода вычисления флюксией, то с логической точки зрения третья работа Ньютона была столь же малообоснованной, как и первая. Производную Ньютон вычислял, отбросив все члены в (2), содержавшие h в степени выше первой, например члены с h2.
Несколько утверждений относительно флюксий Ньютон высказал в своем главном труде «Математические начала натуральной философии» (1-е изд., 1687). От неделимых в пределе величин он отказался в пользу «исчезающе делимых величин», т.е. величин бесконечно делимых. В первом и в третьем изданиях «Начал» Ньютон утверждал:
Предельные отношения исчезающих количеств не суть отношения пределов этих количеств, а суть те пределы, к которым при бесконечном убывании количеств приближаются отношения их и к которым эти отношения могут подойти ближе, нежели на любую наперед заданную разность, но которых превзойти или достигнуть на самом деле не могут, ранее чем эти количества уменьшатся бесконечно.
Хотя приведенный нами отрывок не отличается особой ясностью, это наиболее ясное из всех утверждений Ньютона о флюксиях. Именно здесь Ньютон употребил ключевое слово «пределы» (его терминология была иной), хотя и не стал углубляться в анализ этого понятия.
Ньютон, несомненно, сознавал неудовлетворительность предложенного им объяснения флюксии и, должно быть, с отчаяния обратился к ее физическому смыслу. Вот что говорится об этом в «Началах».