Математика. Утрата определенности. — страница 59 из 112

Обычно поступают так, будто принятие постулатов само по себе достаточно для того, чтобы все постулаты выполнились. Мы постулируем, что операция вычитания, деления или извлечения корня всегда выполнима, и считаем, что этого вполне достаточно. Но почему мы не постулируем, что через любые три точки можно провести прямую? Почему мы не постулируем, что все законы сложения и умножения остаются в силе для комплексных чисел с тремя единицами точно так же, как они выполняются для вещественных чисел? Это происходит потому, что такого рода постулаты содержат противоречие. Прекрасно! Но тогда первое, что нам необходимо сделать, — это доказать непротиворечивость наших остальных постулатов. А пока это не будет сделано, вся строгость, к которой мы так стремимся, останется столь же зыбкой и призрачной, как лунное сияние.

Пеано и его школа в 90-х годах XIX в. также стали несколько серьезнее относиться к проблеме непротиворечивости. Пеано был уверен в том, что методы, позволяющие доказывать непротиворечивость аксиом, не замедлят появиться.

Над проблемой непротиворечивости математики вполне могли бы задуматься еще древние греки. Почему же она выступила на передний план лишь в конце XIX в.? Как мы уже говорили, создание неевклидовой геометрии в значительной мере способствовало осознанию того, что геометрия является творением человека и лишь приближенно описывает происходящее в реальном мире. При всех неоспоримых достоинствах этого описания его нельзя считать истинным в том смысле, что оно не адекватно внутренней структуре окружающего мира и, следовательно, не обязательно непротиворечиво. Движение за аксиоматизацию математики в конце XIX в. заставило математиков понять, сколь глубокая пропасть отделяет математику от реального мира. Каждая аксиоматическая система содержит неопределяемые понятия, свойства которых задаются только аксиомами. Смысл неопределяемых понятий не зафиксирован раз и навсегда, хотя интуитивно мы представляем себе, что такое точки или прямые. Разумеется, предполагается, что аксиомы выбраны так, чтобы задаваемые им свойства находились в согласии с теми, которые мы интуитивно с ними связываем. Но можем ли мы быть уверенными в том, что нам удалось выбрать аксиомы именно таким образом, что, формулируя их, мы не привнесли некоторое нежелательное свойство (или же оно следует из принятых нами аксиом), которое может привести к противоречию?

Паш отметил еще одну особенность аксиоматического метода. В любой области математики желательно, чтобы аксиомы были независимыми, т.е. чтобы любую из принятых аксиом нельзя было вывести из остальных, так как аксиома, выведенная из других, является уже не аксиомой, а теоремой. Метод доказательства независимости той или иной аксиомы состоит в указании интерпретации или построении модели, в которой все аксиомы, кроме проверяемой на независимость, выполняются, а проверяемая аксиома не выполняется. (Такая интерпретация не обязательно должна быть совместимой с отрицанием проверяемой аксиомы.) Так, для доказательства независимости аксиомы Евклида о параллельных от остальных аксиом евклидовой геометрии можно воспользоваться интерпретацией гиперболической неевклидовой геометрии, в которой выполняются все аксиомы евклидовой геометрии, кроме аксиомы о параллельных, а сама аксиома о параллельных не выполняется. Интерпретация, удовлетворяющая проверяемой аксиоме и противоположной аксиоме, не была бы непротиворечивой. Следовательно, прежде чем воспользоваться для доказательства независимости какой-либо аксиомы интерпретацией, или моделью, необходимо убедиться в том, что эта интерпретация, или модель, непротиворечива. Так, независимость аксиомы Евклида о параллельных была доказана на модели гиперболической евклидовой геометрии, реализуемой на поверхности в евклидовом пространстве.

В дальнейшем мы расскажем о сомнениях, неадекватностях и глубоких проблемах, которые породила аксиоматизация математики; однако в начале XX в. аксиоматический метод считался идеалом математической строгости. Никто не превозносил аксиоматический метод больше, чем Гильберт, ставший к тому времени признанным лидером мировой математики. В статье «Аксиоматическое мышление» (1918) он утверждал:

Все, что может быть предметом математического мышления, коль скоро назрела необходимость в создании теории, оказывается в сфере действия аксиоматического метода и тем самым математики. Проникая во все более глубокие слои аксиом… мы получаем возможность все дальше заглянуть в сокровенные тайны научного мышления и постичь единство нашего знания. Именно благодаря аксиоматическому методу математика, по-видимому, призвана сыграть ведущую роль во всем нашем знании.

Аналогичные мысли Гильберт высказывал и в 1922 г.:

Аксиоматический метод поистине был и остается подходящим и неоценимым инструментом, в наибольшей мере отвечающим духу каждого точного исследования, в какой бы области оно ни проводилось. Аксиоматический метод логически безупречен и в то же время плодотворен; тем самым он гарантирует полную свободу исследования. В этом смысле применять аксиоматический метод — это значит действовать, понимая, о чем идет речь. Если ранее, до аксиоматического метода, приходилось действовать наивно, слепо веря в существование определенных отношений, то аксиоматический метод устраняет подобную наивность, сохраняя все преимущества уверенности.

Возможно, создается впечатление, что математики приветствовали установление прочной, строгой основы своей науки. Однако математикам ничто человеческое не чуждо. И далеко не все математики с энтузиазмом приветствовали точную формулировку таких основных понятий, как иррациональное число, непрерывность, производная и интеграл. Многие не поняли новой терминологии и сочли точные определения своего рода причудами, отнюдь не обязательными для понимания математики и даже для строгих доказательств. Те, кто так считал, полагались на свою интуицию, несмотря на сюрпризы, преподнесенные открытием непрерывных, но не дифференцируемых функций и других логически правильных, но противоречащих интуиции математических объектов. Так, в 1904 г. Эмиль Пикар (1856-1941), говоря о строгости в теории дифференциальных уравнений с частными производными, заметил: «Истинная строгость плодотворна и этим отличается от другой строгости, чисто формальной и утомительной, бросающей тень на затрагиваемые ею проблемы». Шарль Эрмит (1822-1901) в письме к Томасу Яну Стильтьесу от 20 мая 1893 г. признавался: «С чувством непреодолимого отвращения я отшатываюсь от достойного всякого сожаления зла — непрерывных функций, не имеющих производных». Пуанкаре (1854-1912), с чьей философией математики нам предстоит познакомиться в следующей главе, жаловался; «В прежние времена новые функции вводились для того, чтобы их можно было применять. Ныне же строят функции, чтобы прийти в противоречие с выводами наших предшественников. Такие функции не годятся ни для чего иного».

Многие авторы тех определений и доказательств, ошибочность которых стала очевидной, принялись утверждать, будто имели в виду именно тот смысл, к которому привела строгая теория. К подобному приему прибегал даже такой выдающийся математик, как Эмиль Борель. Другие возражали против, как они говорили, «выискивания блох». В одной из своих работ, опубликованной в 1934 г., Годфри Гарольд Харди назвал строгость неотъемлемым элементом математики. Другие математики не понимали природы математической строгости и, опасаясь неприятностей, поносили ее. Некоторые даже поговаривали об анархии в математике. Новые идеи, в частности те, которые способствовали установлению математической строгости, математики воспринимали ничуть не менее предвзято, чем обычно люди воспринимают любые новшества.

Успехи в области оснований математики обнаружили еще одну сторону математических творений. Строгость не только удовлетворяла потребностям математики XIX в., но и позволила нам кое-что понять в развитии математики. Предполагалось, что обоснованные по последнему слову «математической техники» строгие структуры гарантируют «доброкачественность» математики, но эти гарантии оказались необоснованными. Ни одна теорема арифметики, алгебры или евклидовой геометрии не была изменена в результате пересмотра оснований, и только некоторые теоремы математического анализа пришлось сформулировать точнее. Например, прежде чем воспользоваться производной непрерывной функции, современным математикам приходится вводить дополнительную гипотезу о том, что эта функция дифференцируема. В действительности все новые аксиоматические структуры и строгость лишь подтвердили то, в чем и без того не сомневались математики. Аксиомы позволили доказать уже известные, а не какие-то новые теоремы, так как «старые» теоремы в подавляющем большинстве были правильными. В целом это означало, что в основе математики лежит не логика, а здравый смысл и интуиция. Строгость, по выражению Жака Адамара, лишь освящает то, что завоевано интуицией. Герман Вейль назвал строгость гигиеной, с помощью которой математик поддерживает здоровье и силу своих идей.

Как бы то ни было, к началу XX в. строгость снова стала играть заметную роль в математике и служить, хотя и с большим запозданием, гарантией прочности и обоснованности достижений, накопленных математикой за много столетий. Математики могли наконец во всеуслышание заявить, что исполнили свой долг по отношению к стандарту, установленному древними греками, и не без облегчения отметить, что, за исключением незначительных поправок, здание, построенное ими на эмпирической или интуитивной базе, теперь было в основном подкреплено логикой. При мысли об этом математиков охватывало ликование и даже самодовольство. Оглядываясь в прошлое, они могли указать несколько кризисных ситуаций (иррациональные числа, математический анализ, неевклидова геометрия, кватернионы) и поздравить себя с тем, что всякий раз им удавалось успешно разрешить возникавшую проблему.

На II Международном конгрессе математиков, состоявшемся в 1900 г. в Париже, с докладом на пленарном заседании выступил Анри Пуанкаре, соперничающий тогда с Гильбертом в борьбе за лидерство в математике. Несмотря на скептическое отношение к ц