Когда вы, добравшись до кинотеатра, намереваетесь оплатить парковку, в билетном автомате вполне может не оказаться сдачи. Если у вас достаточно монет, то вы, скорее всего, захотите, как можно быстрее набрать точную сумму. Жадный алгоритм, который в такой ситуации многие используют интуитивно, состоит в том, чтобы вставлять в прорезь монету наивысшего достоинства, но меньше оставшейся к оплате суммы.
Большинство денежных систем – в Великобритании, Австралии, Новой Зеландии, ЮАР, Европе и т. д. – имеют структуру 1–2–5, при этом достоинства монет или банкнот в этой структуре увеличиваются кратно деноминации. В Великобритании, например, в обращении 1-, 2– и 5-пенсовые монеты. Далее следуют монеты достоинством 10, 20 и 50 пенсов, затем монеты в 1 фунт и 2 фунта стерлингов, за которыми следуют 5-, 10-, 20– и, наконец, 50-фунтовые банкноты. Таким образом, чтобы в рамках этой системы набрать 58 пенсов мелочью с помощью жадного алгоритма, нужно взять 50-пенсовик, оставив 8 пенсов до требуемой суммы; 20 и 10 пенсов уже превысят нужную величину, поэтому добавляем 5 пенсов, затем 2 пенса и наконец пенни. Получается, что во всех валютных системах такого типа, включая американскую, исполнение описанного выше жадного алгоритма позволяет набрать нужную сумму из наименьшего количества монет.
Но вовсе не обязательно, что этот алгоритм будет работать в любой валютной системе. Если бы вдруг существовала еще и 4-пенсовая монета, то последние 8 пенсов из 58 можно было бы набрать всего двумя 4-пенсовыми монетами вместо монет по 5, 2 и 1 пенсу. Любая валюта, для которой каждая монета или банкнота по крайней мере в два раза дороже, чем предыдущая по номиналу, удовлетворяет условиям жадного алгоритма. Это объясняет преобладание структуры «1–2–5» – соотношения 2 или 2,5 между номиналами гарантируют, что жадный алгоритм будет работать, а простая десятеричная система сохраняется. Поскольку мелочь требуется практически повсеместно, почти все валюты мира организованы таким образом, чтобы удовлетворять условиям жадного алгоритма – за исключением Таджикистана, где в обращении ходят монеты достоинством в 5, 10, 20, 25 и 50 дирамов. 40 дирамов проще набрать двумя монетами по 20, чем монетами по 25, 10 и 5 дирамов, что предлагает жадный алгоритм.
Кстати, о жадности: вы когда-нибудь пробовали заказать 43 макнаггетса в «Макдоналдсе»? Как ни странно, эти жареные во фритюре панированные кусочки курицы породили интересную математику. В Великобритании макнаггетсы первоначально подавали в коробках по 6, 9 или 20 штук. Обедая с сыном в «Макдоналдсе», математик Анри Пиччотто решил подсчитать, сколько наггетсов он не сможет заказать одномоментно, используя комбинации из трех коробок. Ответом стал числовой ряд 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37 и 43. Все остальные «наборы» наггетсов составить было можно; эти числа с того дня стали известны как числа Макнаггетса. Самое большое число, которое нельзя получить, комбинируя с кратными величинами заданного набора чисел, называется числом Фробениуса. Числом Фробениуса для куриных макнаггетсов, таким образом, было 43. К сожалению, когда «Макдоналдс» добавил в ассортимент упаковки по 4 наггетса, число Фробениуса упало до 11. Забавно, что даже с добавлением этой новой коробки, жадный алгоритм не позволит набрать 43 наггетса (две порции по 20 дадут сразу 40, а порции из 3 наггетсов нет), так что получить на заказ 43 наггетса в «Макавто» сегодня все еще непросто – хотя набрать это количество и возможно.
Высокоразвитые
Жадные алгоритмы – когда они работают – предлагают высокоэффективные методы решения проблем. Однако когда они не работают, они оказываются не просто бесполезны, но и вредны. Намереваясь отправиться на лоно природы и взобраться на самую высокую вершину, чтобы подышать свежим горным воздухом, очутиться на верхушке кротовой кучи на своем заднем дворе из-за того, что вы воспользовались негибким жадным алгоритмом, будет не очень-то приятно. Такой результат оптимальным не назовешь. К счастью, существует ряд алгоритмов, вдохновленных самой природой, которые помогают нам преодолевать как образные, так и настоящие препоны.
Одна из процедур, известная как муравьиный алгоритм, посылает армии компьютерных «муравьев» для исследования виртуальной среды, отражающей реальную проблему. Так, при решении задачи коммивояжера муравьи снуют между близлежащими пунктами назначения, отражая способность настоящих муравьев воспринимать лишь ближайшее для них окружение. Если муравьи находят короткий маршрут по всем точкам, то они метят его феромонами, чтобы направить по нему других муравьев. Более востребованные и, соответственно, более короткие маршруты привлекают больше муравьиного трафика. Как и в реальном мире, выделенный феромон испаряется, позволяя муравьям гибко менять оптимальную маршрутизацию при изменении пунктов назначения. Муравьиный алгоритм используется для поиска эффективных решений проблем NP-группы – таких как проблема маршрутизации транспортных потоков, – а также для моделирования сложнейших биологических процессов, включая особенности формирования многокомпонентных трехмерных белковых структур из простых одномерных цепочек аминокислот.
Муравьиный алгоритм – всего лишь один из целого семейства так называемых алгоритмов роевого интеллекта, вдохновленных природой. Стаи скворцов или косяки рыб способны очень резко – и при этом согласованно и синхронно – менять направление движения, несмотря на то что каждая особь может коммуницировать лишь с небольшим числом особей по соседству. Информация о появлении хищника неподалеку от одного края косяка рыбы, например, быстро распространяется на другой его край. Заимствуя эти принципы локального взаимодействия, разработчики алгоритмов могут использовать огромные «стаи» исполнительных устройств, объединенных в информационную сеть, для исследования окружающей среды. Их быстрое, «роевое» взаимодействие позволяет им узнавать об открытиях, сделанных другими участниками «роя» в поисках оптимального окружения.
Самый известный природный алгоритм – эволюция. В своей простейшей форме эволюция объединяет признаки родителей, чтобы производить детей. Дети, которые лучше подготовлены к выживанию и размножению в своем окружении, в следующем поколении передадут свои признаки бóльшему числу потомков. Иногда между поколениями происходят мутации, что привносит в популяцию новые признаки, которые могут быть лучше или хуже уже имеющихся. Для создания биоразнообразия, способного решить некоторые из самых сложных проблем планеты, достаточно исполнять всего лишь три простые процедуры – отбирать, комбинировать и мутировать.
Но прежде, чем петь дифирамбы этой биологически-эволюционной панацее, надо признать, что эволюционные решения часто бывают хорошими, но редко, а то и вовсе никогда – безупречными. Документальные фильмы и познавательные статьи о дикой природе изобилуют примерами «идеальной» адаптации животных к окружающей среде. От обитающих в пустыне сумчатых крыс, которые научились обходиться вовсе без воды, извлекая всю необходимую влагу из своего корма, до нототениевидных рыб, которые вырабатывают белки-«незамерзайки», чтобы выжить в океане при отрицательных температурах, – эволюция способствовала появлению животных, блестяще приспособленных к сложным средам обитания.
Однако слепой ход эволюции, которая просто перебирает имеющиеся возможности, не следует путать с целенаправленным поиском совершенства. Эволюция, как правило, находит решение, которое подходит больше, чем любое предыдущее решение для этой среды, но не всегда лучшее.
Популяция обыкновенной рыжей белки в Великобритании является классическим примером. С ее острыми когтями, гибкими задними лапами и длинным хвостом, необходимым для равновесия, она хорошо приспособлена для лазания по деревьям в поисках пищи. Ее зубы непрерывно растут на протяжении всей жизни, позволяя белкам разгрызать твердую наружную оболочку орехов, не теряя при этом резцы. Казалось, она идеально приспособилась к окружающей среде – но тут появился еще более приспособленный родственник. Значительно более крупная серая белка находит и съедает больше пищи, а также более эффективно переваривает и хранит ее. Хотя серые белки никогда не нападали на рыжих и не убивали их, превосходная адаптация быстро сделала их вид доминирующим в широколиственных лесах Англии и Уэльса; они превзошли рыжих в межвидовой конкуренции и захватили их экологическую нишу. Наше восприятие «образцовой» адаптации отдельно взятых видов, вероятно, продиктовано не столько реальными результатами эволюционного поиска оптимального варианта, сколько нашим ограниченным представлением о том, что такое по-настоящему идеальное решение.
Несмотря на то что эволюция не всегда находила лучшее решение, ученые-компьютерщики многократно заимствовали ключевые постулаты наиболее известного из естественных алгоритмов – прежде всего, в виде так называемых генетических алгоритмов. Эти инструменты используются для решения задач планирования (в том числе для составления расписания матчей ведущих спортивных лиг) и для поиска хороших, если не идеальных, решений сложных задач класса NP – таких, как задача о рюкзаке.
Задача о рюкзаке – это история торговца, который хочет унести с собой на рынок как можно больше товаров в рюкзаке с ограниченной вместимостью. Он не может взять с собой все, поэтому приходится выбирать. Разные предметы имеют разные размеры и принесут разную прибыль. Наилучшее решение проблемы рюкзака – отобрать товары, которые принесут самый большой доход. Вариации задачи о рюкзаке возникают при необходимости вырезать фигурные формы из теста или при попытке сэкономить на оберточной бумаге, упаковывая подарки на Рождество. Та же проблема возникает при погрузке судов и фур. Когда диспетчер загрузки определяет, какие куски данных нужно загрузить и в каком порядке, чтобы максимально использовать ограниченную пропускную способность интернет-канала, он пытается решить задачу о рюкзаке.