Механика машины времени — страница 21 из 27

Ярким примером сказанному служат построения Стивена Хокинга, исследующего противоречия между инвариантностью к направлению времени законов науки и огромным психологическим различием между прошлым и будущим в нашем сознании. Хокинг рассматривает три «стрелы времени»: термодинамическую, проявляющуюся в увеличении энтропии, космологическую, проявляющуюся в том, что Вселенная расширяется, а не сжимается, и психологическую, вследствие которой мы помним прошлое, а не будущее.

В ряде своих работ Хокинг излагает оригинальную идею о двух взаимно дополненных временах: действительном, в котором пространство – время обладает метрикой Минковского, и мнимом, в котором пространство – время является евклидовым четырехмерным многообразием. Мнимое время Хокинга уже не является необратимым временем, оно окончательно становится одним из измерений пространства, относительно которого можно двигаться как вперед, так и назад. При этом окружающее нас трехмерное пространство становится безграничной сферой, вписанной в евклидовое четырехобразие. В такой «темпоральной модели» нет границ и особых точек, поэтому процессы раздувания и сжатия Вселенной оказываются физически неразличимыми, как движения по поверхности сферы к экватору и от него.

Темпоральный мир Хокинга включает неизменное направление термодинамической стрелы как в фазе расширения, так и в фазе сжатия. Но расширение характеризуется «сильной стрелой». Напротив, в фазе сжатия беспорядок увеличивается очень мало. Далее Хокинг рассуждает следующим образом: нам – наблюдателям Вселенной – для интеллектуальной деятельности, направленной на уменьшение энтропии, требуется ее существенное увеличение (сильная термодинамическая «стрела времени») в окружающей нас среде. Из этого следует вывод о невозможности существования тех, кто наблюдает Вселенную в стадии ее сжатия.

Это красивая, хоть и не во всем доказанная теория. И тем не менее модель Стивена Хокинга не получила широкого распространения. Возможно, это связано с тем, что она не дает прямых ответов на вопросы о сущности времени и его связи с физическими законами. Время в модели Хокинга, как и в других геометрических моделях, присутствует изначально в виде линейной упорядоченности значений аргумента тех функций, которыми описываются эти законы. Однако вопрос о связи законов физики и геометрии с линейным порядком цепи событий и распределением состояний в ней не рассматривается. Если даже удастся доказать, что раздувание Вселенной, увеличение энтропии и характерная асимметрия нашей памяти взаимно согласованы, этот ансамбль будет свидетельствовать лишь о существовании в уже заданном времени взаимосвязанных необратимых процессов.

В свою очередь друг и коллега Хокинга Роджер Пенроуз считает, что необратимость времени объясняется временной асимметрией процедуры редукции волновой функции. При этом он относится к числу тех теоретиков, которых не удовлетворяет копенгагенская трактовка квантовой механики, предложенная Бором. С его точки зрения редукция волновой функции происходит по объективным причинам, не зависящим от сознания наблюдателя. Модель квантового времени Пенроуза базируется на следующих основных положениях: редукция волновой функции применима только в направлении от прошлого к будущему. Эта процедура пригодна только для расчета вероятностей будущих событий, исходя из прошлых. Процедура редукции не зависит от присутствия наблюдателя и его сознания. Редукция волновой функции происходит вследствие такого искривления пространства – времени, при котором неизбежно нарушаются правила квантовой линейной суперпозиции. Пенроуз считает, что именно в этом случае суперпозиция комплексных амплитуд в принципе допустимых альтернатив заменяется набором вероятностно-взвешенных реальных, из которых одна фактически имеет место.

Свою модель Пенроуз иллюстрирует на примере простого квантового эксперимента: вероятность регистрации фотона фотоэлементом при условии излучения фотона источником равна в точности одной второй, но вероятность излучения фотона источником при условии, что фотоэлемент зарегистрировал фотон, заведомо не равна половине.

Как считает Пенроуз, его схема действия квантового времени проявляется при сближении квантового объекта с измерительным прибором или иным объектом до масштаба кванта тяготения – гравитона. Таким образом, для описания квантовых процессов в искривленном пространстве – времени Общей теории относительности математический аппарат квантовой механики просто не подходит.

Выдающийся бельгийский физик и философ Илья Пригожин считал, что все парадоксы времени связаны с наличием на макро– и микроуровнях динамического хаоса, определяемого потоками энтропии как меры упорядочения окружающих нас явлений и процессов. Его темпоральная модель реальности сводится к тому, что все динамические системы, населяющие наш мир, делятся на два больших класса. Одни из них являются обратимыми, которые могут быть описаны в терминах траекторий, а другие – необратимыми, или хаотическими, которым соответствует несводимое описание. Несводимость описания хаотических систем означает невозможность перехода от вероятностного описания их поведения к детерминированному описанию в терминах траекторий.

Для космологических представлений времени Пригожин использовал образную феноменологическую модель переохлажденной жидкости на границе кристаллизации. В подобной метастабильной среде могут наблюдаться флуктуации температуры и плотности, приводящие к образованию микроскопических кристалликов. Такие кристаллики крайне неустойчивы и то появляются, то снова растворяются. Но вот несколько метастабильных микрокристалликов случайным образом сливаются вместе, запуская процесс агрегатного перехода. Так образуется крупный кристалл, и система теряет устойчивость, переходя в твердое агрегатное состояние. Согласно Пригожину, в состоянии агрегатного квазиравновесия «стрелы времени», управляющей макроскопическими эффектами, просто не существует. Она возникает только вместе с процессом фазового перехода, который приводит к необратимому образованию кристаллической среды. По словам Пригожина: «Аналогично, очень малая вероятность критической флуктуации в вакууме Минковского указывает на то, что стрела времени уже существует в нем в латентной, потенциальной форме, но проявляется только когда неустойчивость приводит к рождению новой Вселенной. В этом смысле время предшествует существованию Вселенной».

В данной модели обратимый динамический процесс не может претендовать на роль референта времени из-за отсутствия в нем требуемой асимметрии. Однако неустойчивый необратимый процесс хотя и обладает требуемой асимметрией, не может быть использован для измерения времени. Его состояния не могут быть использованы в качестве численных значений моментов времени вследствие экспоненциального расхождения любых, сколь угодно близких вначале, траекторий и их бесконечного перепутывания, как это имеет место в странных аттракторах.

Сам автор данной темпоральной гипотезы считал: «Чтобы вопросы, задаваемые нами системе, имели физический смысл, они должны допускать устойчивые, т. е. грубые, ответы. Именно поэтому в подобных ситуациях мы вынуждены обращаться к статистическому описанию, остающемуся в силе при произвольных временах». Но для получения статистического описания требуются эксперименты и устойчивые измерения во времени. Не существует статистического описания чего-либо вне времени или в один единственный момент времени. Иными словами, несводимое описание неустойчивого динамического процесса уже подчинено временному определению статистического метода. Во всех случаях это временное определение достигается с помощью устойчивых обратимых периодических процессов, которые сами по себе требуют изначального определения во времени.

Критики модели термодинамического времени Пригожина указывают, что, как правило, динамические процессы не могут быть определены вне времени. Поэтому «стрела времени» не может быть следствием физических законов, описывающих динамику классических, релятивистских или квантовых систем. Впрочем, подобные соображения, подкрепленные умозрительными доводами, и сами по себе представляют лишь спекуляции в научном плане…

Наряду с темпоральными моделями Хокинга и Пенроуза физики бурно обсуждают и гипотезу времени известного квантового теоретика Дэвида Дойча, назвавшего ее «первой квантовой концепцией». Его идеи в целом базируются на знаменитой многомировой интерпретации квантовой механики Хью Эверетта. Согласно идее Дойча, настоящий момент, который мы называем «сейчас», не статичен, он постоянно «движется» в нашем восприятии в направлении будущего.

Это движение Дойч и называет потоком времени. Вся загадочность времени, по мнению автора «первой квантовой концепции», проистекает из его основного логического свойства – этой самой нестатичности «сейчас». Хотя предполагается, что «сейчас» – это множество одновременных событий, тем не менее не имеется ни малейшей, даже чисто умозрительной, возможности проверить эту гипотезу обозреть и, тем более, измерить «сейчас», ведь «сейчас» не имеет длительности. Дойч утверждает, что причина противоречивости общепринятой модели времени в том, что она не имеет смысла сама по себе. Бессмысленной, с его точки зрения, является идея предполагаемого движения настоящего момента в направлении будущего или предполагаемого движения нашего сознания от одного момента к другому.

Дойч критически рассматривает точку зрения операциональной копенгагенской трактовки квантовой теории, согласно которой реальность представляет собой суперпозицию альтернатив. Данные квантовые вероятности эволюционируют в пространстве, согласно уравнению Шредингера, вплоть до момента взаимодействия с прибором. После самого акта измерения наблюдатель получает возможность осознать одну из множества альтернатив. При этом сама апелляция к наблюдателю, никак не входящему в физические уравнения, делает данную идею в высшей степени парадоксальной.

С точки зрения многомировой концепции состояние каждого наблюдателя надлежит считать «расщепляющимся», так как наблюдатель как бы существует во множестве своих реплик, каждая из которых живет своей жизнью и обладает различным житейским опытом. Соответственно, и мир наблюдателя как бы расщепляется на множество (в принципе бесконечное) миров. И это шизофреническое (расщепляемое) состояние оператора преследует его при каждом измерении, производимом над окружающей реальностью. В таком представлении вероятность квантового состояния отражает относительное количество миров, где это состояние встречается, т. е. уже не является «потенциальностью». Парадокс коллапса волновой функции устраняется, но ценой чудовищного размножения ветвей мира при каждом новом акте осознания реальности наблюдателем.