д существенным, хотя и не непосредственным влиянием комментария Филопона, послужило источником развития подобных представлений на Западе.
Из более поздних комментаторов Аристотеля широко известен родившийся в Кордове Абу-л-Валид Мухаммед ибн Рошд (Аверроэс, 1126—1198)—наиболее ортодоксальный приверженец аристотелевской теории. По Ибн-Рошду, материальный мир бесконечен во времени, но ограничен в пространстве. Материя — универсальный и вечный источник движения. Движение вечно и непрерывно, так как каждое новое движение имеет причиной предшествующее. Время существует и доступно измерению только благодаря движению. Философское учение Ибн-Рошда резко противоречило официальной мусульманской догматике. Оно получило распространение в Западной Европе в период феодализма и раннего Возрождения и способствовало развитию материалистической стороны философии Аристотеля.
Рассуждая о механизме передачи движения, Ибн-Рошд объяснял его сравнением с волнами, распространяющимися кругами на воде, в которую брошен камень. Он считал, что частицы воды способны к взаимопроникновению. Аналогичное явление, по его мнению, происходит в воздухе при движении в нем брошенного тела. Таким образом, проникновением частиц среды в движущееся тело и поддерживается движение последнего. Однако это взаимопроникновение частично, ибо если бы оно было полным, т. е. среда не обладала бы упругостью, никакой передачи движения не могло быть.
Существенное влияние на формирование указанных представлений в Западной Европе оказала и продолжительная дискуссия (на почве комментирования «Физики») между Ибн-Рошдом и испано-арабским ученым XII в. Ибн-Баджжей (Авемпаце, ум. в 1138 г.), в которой Ибн-Баджжа защищал и развивал точку зрения Филопона. (Теория Ибн-Баджжи была известна на Западе лишь в изложении критиковавшего ее Ибн-Рошда.) Ибн-Баджжа утверждал, что даже в пустоте тело движется с конечной скоростью, так как, несмотря на отсутствие сопротивления, должно всегда пройти некоторое расстояние. Подобно Филопону, он считал движение небесных сфер примером движения без сопротивления с конечной скоростью.
С переводом и комментированием Архимеда и Герона связано дальнейшее развитие как геометрического, так кинематического направления статики. Кинематические исследования стали интенсивно развиваться в связи с переводом и комментированием «Альмагеста» Птолемея и его античного комментатора Теона Александрийского. Изучение Птолемея (наряду с индийскими астрономическими сочинениями, которые написаны в свою очередь под сильным влиянием александрийской астрономии) послужило основой для составления зиджей — собраний таблиц и расчетных правил для вычисления положений светил на небесной сфере. В основе зиджей лежат греческие кинематико-геометрические методы моделирования движений небесных тел. Вообще для механики арабо-язычной науки, как и для ее математики, характерна разработка количественной стороны проблем и развитие в связи с этим вычислительных методов. Это в особенности относится к исследованиям в области статики и гидростатики, которые получили развитие в связи с практикой взвешивания металлов и минералов, игравшей существенную роль в международной торговле.
Следуя античной традиции, ученые стран ислама называли механику «илм ал-хийал», т. е. учением о хитроумных приспособлениях, что представляет собой дословный перевод греческого термина mechane. Как и у античных авторов, в средневековых восточных сочинениях встречается подразделение механики на учение о военных машинах и собственно учение о хитроумных приспособлениях, под которыми имелись в виду главным образом устройства для поднятия тяжестей и воды для поливки полей.
Раздел о механике входит в состав большинства средневековых восточных энциклопедий. Наиболее полным в этом смысле является древнейшее из подобных сочинений «Ключи наук» Абу Абдаллаха ал-Хорезми (IX в.), состоящее из двух книг. Одна из глав второй книги целиком посвящена механике. Это в основном переработка «Механики» Герона.
В книге дано описание простых машин и их комбинаций и приводится руководство по их практическому применению. В нее входит также раздел, посвященный военным машинам; кроме того, содержатся некоторые сведения из «Пневматики», главным образом о механизмах, приводимых в движение с помощью пневматических устройств.
«Механические проблемы» и «Механика» Герона лежат в основе механических глав «Книги знания» Ибн-Сины, где рассматриваются пять простых машин: рычаг, блок, ворот, клин и винт, а также их комбинации — некоторые из последних отсутствуют у Герона. На конкретных примерах рассматривается применение описанных машин и их комбинаций для поднятия грузов.
Известен трактат аналогичного содержания «Книга о механике», принадлежавший знаменитым астрономам и математикам Багдадской школы — трем братьям Бану Муса (IX—X вв.) (некоторые источники приписывают его одному из братьев — Ахмаду, наиболее сведущему в механике). Среди механических устройств, описанных в «Книге о механике», имеется, в частности, приспособление для поддержания постоянного уровня воды в сосуде.
Трактат братьев Бану Муса породил целый ряд комментариев и трактатов, написанных на его основе. Механическим устройством для поднятия воды посвящен трактат Абу-л-Изза Исмаила ал-Джазари (XII—XIII вв.) «Книга о познании инженерной механики». Такого же рода устройства рассматриваются в трактате Мухаммада ибн-Али ал-Хурасани «О водяных колесах и подъеме воды и служащих для этого механических устройствах».
Многочисленные описания всевозможных механических устройств, применявшихся в разных странах ислама, содержатся в географических сочинениях алкинди Якута и Ибн-Халдуна. Ал-Бируни рассматривает их при описании ирригационных сооружений в Хорезме{46}.
В некоторых средневековых восточных энциклопедиях особо выделяется «наука о подъеме воды», которую авторы рассматривают как раздел геометрии.
Перевод и комментирование трудов Архимеда послужили основой дальнейшего развития геометрической статики и гидростатики в странах ислама. Переводчиком Архимеда был, например, крупнейший математик и астроном IX в. Сабит ибн-Корра. Именно в переводах Сабита ибн-Корры сохранились сочинения Архимеда, которые не дошли до нас в греческом оригинале.
Кроме сочинений Архимеда Ибн-Корра перевел на арабский язык «Конические сечения» Аполлония, «Альмагест» Птолемея, а также был комментатором «Начал» Евклида. Его собственные математические трактаты по содержанию и методам близки к сочинениям Архимеда, но включают и оригинальные открытия автора. Трактат «Книга о корастуне», также написанный под сильным греческим влиянием, получил широкое распространение в средние века; в XII в. был переведен в Западной Европе на латинский язык под названием «Liber Charas-tonis».
Ибн-Корра в «Книге о корастуне» излагает теорию взвешивания, следуя главным образом кинематическому направлению статики «Механических проблем» и «Физики» Аристотеля. В использованном (хотя четко не определяемом) Ибн-Коррой понятии «силы движения» некоторые исследователи видят аналогию с работой силы тяжести тела при его возможном перемещении, так как при заданном грузе сила движения считалась пропорциональной перемещению, а при постоянстве последнего — пропорциональной весу груза.
Ибн-Корра не ограничивается изложением теории невесомого рычага. Стремясь приблизиться к практике взвешивания, он пытается учесть вес коромысла и строит теорию весомого рычага. Его рассуждения опираются на два положения: два равных груза можно заменить одним двойным, подвешенным посредине между ними; распределенный равномерно по рычагу вес можно заменить грузом такого же веса, приложенным к середине рычага. Хотя сами по себе эти исходные предпосылки и верны, окончательные результаты не совсем ясны, и приведенное в конце книги правило градуирования весов не вытекает из полученных результатов. Доказательство Ибн-Корры близко к методам геометрической статики Архимеда. По существу это решение задачи определения центра тяжести тяжелого отрезка, значительно более простой, чем определение центров тяжести в работах Архимеда. Ибн-Корра доказывает вначале теорему о равнодействующей двух равных сил и, распространив эту теорему на любое конечное число равных сил, приложенных в точках на равных расстояниях, обобщает ее затем на бесконечное множество (бесконечно много — «ла нихайа», буквально — «без конца») равных сил, т. е. для случая равномерно распределенной нагрузки. При этом Ибн-Корра наряду с операциями над отношениями применяет к непрерывным величинам арифметические действия умножения и сложения. Это сыграло существенную роль в подготовке расширения понятия числа до положительного действительного, которое осуществил впоследствии Омар Хайям.
Целый ряд исследований ученых стран ислама посвящен важной области применения весов — определению удельного веса, преимущественно металлов и драгоценных камней. Отправной точкой для них были античные сочинения по статике, и прежде всего трактат Архимеда «О плавающих телах». Этими проблемами занимались такие крупные ученые, как ал-Бируни, Омар Хайям и его ученик ал-Хазини.
Ал-Бируни в своем минералогическом трактате «Собрание сведений о познании драгоценностей»{47} приводит результаты большого числа точных взвешиваний. В качестве эталона для драгоценных камней он выбирал сапфир, а для металлов — золото.
Определению удельных весов посвящен его специальный трактат «Об отношениях между металлами и драгоценными камнями в объеме», который дошел до нас в передаче ал-Хазини{48}. Среди своих предшественников ал-Бируни называет александрийского математика и астронома Менелая и ряд своих современников, принадлежащих в основном к Багдадской школе: Санада ибн-Али (IX в.), Юханну ибн-Юсуфа (X в.), ар-Рази (XI в.). Своим непосредственным предшественником ал-Бируни считает Ахмада ибн ал-Фадла ал-Бухари (X в.), метод которого основан на сравнении весов равных объемов чистых металлов и сплавов. Аналогичный метод излагается в трактате Абумансура ан-Найризи, посвященном определению удельных весов меди и свинца. Ал-Бируни описывает его под названием «метод Абумансура». Основную проблему ал-Бируни видит именно в «установлении отношений между металлами и минералами в объеме и весе». Для возможно более точного определения объемов изучаемых минералов ал-Бируни пользовался специально сделанным отливным стаканчиком. Удельные веса он приводит с точностью до 1 тасуджа (