Механика от античности до наших дней — страница 24 из 85

бой комплексы одинаковых атомов, могут различаться, так как не все объемы заполнены атомами равномерно. Поэтому Ньютон и определяет массу сложных тел как меру количества материи, устанавливаемую пропорционально плотности ее и объему. Это определение массы, данное Ньютоном в его «Началах», представлялось многим критикам бессодержательным, ибо, по их мнению, само понятие плотности должно определяться через готовое понятие массы. Однако критика эта теряет основание, если согласиться, что в соответствии с атомистической концепцией Ньютон в приведенном выше определении имеет в виду не плотность массы, а плотность распределения атомов. Именно такое понимание массы, принятое Ньютоном, выражено точным образом в определении Герца.

К учению атомистов примыкают в значительной мере также классические представления времени, пространства и движения. Понятия пространства и времени атомисты совершенно отделяли от понятия материи: время и пространство существуют сами по себе, к материальным процессам, протекающим в них, они имеют чисто внешнее отношение. Эту концепцию целиком разделял Ньютон, выразивший ее следующим образом:

«Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью…

Абсолютное пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным…

Место есть часть пространства, занимаемая телом…

Абсолютное движение есть перемещение тела из одного его места в другое…

Как неизменен порядок частей времени, так неизменен и порядок частей пространства. Если бы они переместились из мест своих, то они продвинулись бы (так сказать) в самих себя, ибо время и пространство составляют как бы вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве — в смысле порядка положения»{86}.

Нельзя, впрочем, забывать, что конкретно-исторический генезис идей Ньютона был значительно сложнее и наряду с отражением идей древних атомистов в ньютоновом учении об абсолютном пространстве можно найти отголоски позднеантичных концепций, которые дошли до Ньютона через кембриджских платоников.

Однако не только античная атомистика и позднеантичные концепции пространства воздействовали на развитие механики XVII в. Здесь особенно важно было древне-греческое представление о непрерывном движении. У Галилея эта концепция была тесно связана с воззрениями Архимеда. Дискретная часть вещества — античный атом — движется в непрерывном пространстве, и каждый отрезок его пути может быть разделен на сколь угодно большое число сколь угодно малых отрезков. Эта навеянная механикой Архимеда концепция Галилея открывает дорогу идее непрерывного ускорения и другим фундаментальным идеям классической механики.

В конце жизни Галилей писал о сложении криволинейного и прямолинейного движений у Архимеда как о непосредственном истоке своей теории движения.

«Я не предполагаю ничего иного, кроме определения движения, я хочу трактовать и рассматривать это явление в подражание Архимеду в его «Спиральных линиях», где, заявив, что под движением по спирали он понимает движение, слагающееся из двух равномерных, одного — прямолинейного, а другого — кругового, он непосредственно переходит к демонстрации выводов. Я заявляю о намерении исследовать признаки, присущие движению тела, начинающемуся с состояния покоя и продолжающемуся с равномерно возрастающей скоростью, а именно так, что приращения этой скорости возрастают не скачками, а плавно, пропорционально времени».{87}

Идея непрерывного приращения скорости — это не только исходная идея динамики Галилея, но и исходная идея всей динамики XVII в., «Математических начал» Ньютона и динамики следующего столетия. Более того, это центральная идея классической науки в целом. В механике Аристотеля рассматривалась лишь интегральная схема «естественных мест» и «естественных» движений и «насильственных» движений. Но при этом движение не рассматривали от точки к точке и от мгновения к мгновению. Теперь дело изменилось. В науке появилось дифференциальное представление о движении, об изменении скорости в данной точке, об ускорении. Отсюда изучение проблем динамики с помощью анализа бесконечно малых.

Как уже говорилось, для динамики XVII в. характерно сочетание логико-математического выведения одного понятия из другого и эмпирического изучения мира. Последнее приобретает характер эксперимента, в котором исследуется, проверяется, устанавливается рационально постижимый механизм процесса. В свою очередь логико-математический путь проходит через экспериментально постигаемые понятия.

Такое сочетание выражается в появлении аксиом, которые говорят не о геометрических понятиях, образах и объектах, а о поведении движущихся тел. Это аксиомы механики. К ним ведет долгий путь от интуитивного не-аксиоматизированного положения, молчаливо полагаемого в основу тех или иных выводов, до четко формулированной, логически осознанной аксиомы.

В этом отношении наиболее интересен, пожалуй, принцип сохранения, к которому в разной форме на разных этапах подходили ученые XVII в., принцип инерции как принцип сохранения «состояния», принцип сохранения количества движения, живых сил и т. д.


ИСТОРИЯ ПРИНЦИПОВ СОХРАНЕНИЯ

Современный историк механики не случайно начинает свою общую характеристику развития механики в XVII в. со следующего положения: «От ожерелья, надетого на наклонную плоскость, до первой подлинно математической физики мировой системы, через законы падения и движения брошенных тел в пустоте, законы удара, теорию колебаний маятника, гидростатику и тяжесть воздуха, сопротивление жидкостей и движение в сопротивляющейся среде — таков путь, пройденный механикой XVII века»{88}.

При доказательстве теоремы о равновесии на наклонной плоскости Стевин исходит из верного интуитивного принципа — невозможности вечного движения, возникновения движения из ничего. Мах называл этот еще неаксиоматизированный опыт инстинктивным познанием — определение вряд ли удачно, поскольку здесь налицо некое первичное обобщение повседневного практического опыта, презумпция здравого смысла, лежащая в основе деятельности каждого ремесленника. В этом отношении весьма показательны более ранние высказывания Леонардо да Винчи, проникнутые презрением к искателям вечного движения, а также взгляд Кардано, согласно которому для того, чтобы имело место вечное движение, нужно, чтобы передвигающиеся тяжелые тела, достигнув конца своего пути, могли вернуться в свое начальное положение, а это невозможно без наличия перевеса, как невозможно, чтобы в часах опустившаяся гиря поднималась сама.

ЭВАНДЖЕЛИСТА ТОРРИЧЕЛЛИ (1608-1647)

Итальянский физик и математик, ученик Галилея. Известен открытием давления воздуха и возможности существования вакуума (торричеллиева пустота). Он открыл также закон истечения жидкости из сосуда первый научно обоснованный закон гидродинамики

Как нечто само собой разумеющееся (хотя и не возведенное еще в ранг аксиомы) фигурирует тот же принцип у Галилея, ссылающегося на него мимоходом, в ходе аргументации. В его фундаментальном труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки», сказано: «Если невозможно, чтобы тяжелое тело или соединение таковых поднялось само по себе вверх, удаляясь от общего центра, к которому стремятся все тяжелые тела, то одинаково невозможно, чтобы оно само по себе стало двигаться, если его собственный центр тяжести не приближается при этом к общему центру».

В 1644 г. ученик Галилея Торричелли (1608—1647) опубликовал труд «О движении естественно падающих и брошенных тел», в котором исходил из следующего принципа, игравшего у него роль аксиомы: «Два груза, соединенные вместе, не могут двигаться сами без того, чтобы их общий центр тяжести не опускался. В самом деле, когда два груза связаны друг с другом так, что движение одного влечет за собой движение другого, — безразлично, получается ли такая связь посредством весов, блока или другого механизма, — оба будут вести себя словно один груз, состоящий из двух частей; но такой груз никогда не придет в движение без того, чтобы его центр тяжести не опускался. Стало быть, если груз расположен так, что его центр тяжести никак не может опускаться, он наверняка пребудет в покое в том положении, которое он занимает».

Из этой аксиомы Торричелли выводит закон равновесия на наклонной плоскости: «Если два груза расположены на двух плоскостях разного наклона, но одинаковой высоты, и если веса этих грузов стоят друг к другу в том же отношении, что и длины этих плоскостей, момент обоих грузов будет одинаковый». «В самом деле, мы покажем, — продолжает Торричелли, — что их общий центр не может опускаться, ибо, какое бы движение ни было придано обоим грузам, этот центр всегда находится на той же горизонтальной линии… Таким образом, два груза, связанные вместе, двигались бы, а их общий центр тяжести не опускался бы. Это было бы противно закону равновесия, выдвинутому нами в качестве принципа».

В несколько иной формулировке Торричелли дал тот же закон равновесия в другом своем сочинении «Об изменении параболы». Он исходил здесь из следующего предположения, служившего одновременно определением понятия центра тяжести. Природа центра тяжести, говорит Торричелли, такова, что «тело, свободно подвешенное в одной из своих точек, не сможет пребывать в покое, если центр тяжести не находится в самой низкой точке сферы, по которой оно движется». Отсюда Торричелли выводит, что в момент равновесия центр тяжести находится на вертикали точки подвеса и ниже этой точки