Механика от античности до наших дней — страница 45 из 85

Наиболее фундаментальные его труды посвящены вопросам аналитической механики и математической физики. В исследованиях Пуассона этого цикла сказалось влияние и аналитических методов Лагранжа (в особенности в небесной механике), молекулярных представлений Лапласа (гидродинамика, механика деформируемых сред) и научного наследия Эйлера.

В области небесной механики наибольший интерес представляют его труды, в которых рассматриваются вопросы устойчивости Солнечной системы и выводятся дифференциальные уравнения возмущенного движения. При выводе этих уравнений Пуассон применил метод, в котором ввел выражение, названное впоследствии скобками Пуассона, которое получило широкое применение во многих вопросах теории уравнений с частными производными и аналитической механики. Развив методы вариации произвольных постоянных Лагранжа, Пуассон получил в явном виде выражение вариации элементов орбиты небесного тела через производные пертурбационной функции по координатам для одного из шести элементов его орбиты.

В теории притяжения особый интерес представляют его статья «Замечания об уравнении теории притяжений» (1813) и два мемуара — «О притяжении сфероидов» (1829) и «О притяжении однородных эллипсоидов» (1835), в которых он выводит свое знаменитое уравнение с частными производными Δu = f, (где Δ — оператор Лапласа) — одну из основ теории потенциала.

СИМЕОН ДЕНИ ПУАССОН (1781—1840)

Французский математику механик, физик. Пуассону принадлежат важные работы по аналитической и небесной механике, теории упругости, математической физике и по различным разделам математики

Пуассон был одним из основоположников математической теории упругости. В 1819 г. он нашел решение уравнения теории упругости для одномерного случая, а в 1829—1831 гг. — для двумерного и трехмерного случаев. Его имя носит одна из основных констант теории упругости изотропных тел — коэффициент Пуассона, т. е. абсолютное значение отношения величины относительной поперечной деформации элемента тела к его относительной продольной деформации. Его вывод общего уравнения теории упругости сыграл существенную роль в теории колебаний и волн вообще и в исследовании звуковых волн в частности. В «Мемуаре об общих уравнениях равновесия и движения твердых тел и жидкостей» Пуассон впервые включил в систему дифференциальных уравнений движения жидкости уравнение теплопроводности. Его имя носит кривая, характеризующая обратимый адиабатический процесс в идеальном газе (адиабата Пуассона), уравнение которой Пуассон вывел в 1823 г.

Достижения Пуассона в области аналитической механики наиболее полно изложены в его двухтомном «Курсе механики», первое издание которого вышло в 1811 г. Этот труд, основанный на традициях Лагранжа и Лапласа, отличается в то же время большей доступностью и примерами из многих областей механики и смежных с ней разделов физики. Долгое время он был одним из лучших руководств по механике.

«Курс механики» состоит из четырех частей: статики, динамики, гидростатики и гидродинамики. В разделе статики Пуассон рассматривает условие равновесия «простых машин», с помощью которого переходит к общему закону равновесия тел. Этот закон он выводит, пользуясь принципом виртуальных перемещений, рассматривая как сами перемещения, так и проекции малых путей, описываемых точками приложения сил, на их направления. При изложении динамики Пуассон исходит из основных ее принципов: сохранения движения центра тяжести, сохранения площадей и живых сил. Исходя из последнего он показывает, почему при устройстве машин следует избегать явлений трения и удара тел. Пуассону аналитическая механика обязана и переходом от понятия обобщенных скоростей

к их линейной комбинации — обобщенным импульсам

которые он впервые ввел в «Мемуаре о вариации произвольных постоянных в вопросах механики» (1809). В «Курсе механики» он использует это новое соотношение в виде

Многие вопросы статики и динамики разработаны в нем в виде, удобном для приложений.

«Курс механики» неоднократно переиздавался, и в него были введены разделы, посвященные прикладной механике. В частности, в издание 1833 г. включен раздел, посвященный механике машин «О применении принципа живых сил к вычислению движения машин», в котором Пауссон рассматривает построение уравнения движения машины в общем виде. «Машины, по его определению, суть приспособления или системы твердых тел, предназначенные для переноса сил от одной части этих приспособлений к любой из иных частей». Заметим, что до Пуассона вопросами механики машин обычно занимались представители геометрического направления в механике, а представители аналитического направления обходили их стороной. Пуассон впервые применил аналитические методы к разработке подобных прикладных проблем, и в этом смысле его «Курс механики» явился одним из камней, заложенных в фундамент прикладной механики. Труды Пуассона, и в частности «Курс механики», на котором было воспитано не одно поколение французских ученых, сыграли значительную роль в развитии многих узловых проблем механики.

Закончим наш краткий обзор следующим диалогом Лагранжа с Пуассоном. «Я стар, — сказал однажды Лагранж Пуассону, — во время моих бессонных ночей я развлекаюсь числовыми сравнениями; выслушайте меня, это любопытно. Гюйгенс тринадцатью годами был старше Ньютона; я тринадцатью годами старше Лапласа; Лаплас тридцатью двумя годами старше вас»{178}.

Гениальный Лагранж весьма тонко и деликатно включил Пуассона в число великих творцов механики.


VII.МЕХАНИКА В XIX ВЕКЕ

РОЛЬ ГАМИЛЬТОНА В РАЗВИТИИ ВАРИАЦИОННЫХ ПРИНЦИПОВ МЕХАНИКИ И ТЕОРИИ КВАТЕРНИОНОВ

Уильям Роуан Гамильтон (1805—1865) был одним из гениальных людей своего времени. Уже в ранние годы он поражал окружающих исключительными разнообразными способностями. В четырехлетнем возрасте он неплохо знал географию и свободно читал литературу на английском языке, а восьми лет овладел итальянским и французским языками, изучал арабский, санскрит и латынь. Особенно большую склонность проявлял юноша к математике.

В 1824 г. Гамильтон поступил в Тринити-колледж Дублинского университета, где успешно изучал математические науки и разрабатывал геометрическую оптику, или теорию лучей. В возрасте 22 лет молодой ученый был назначен профессором астрономии колледжа св. Андрея Дублинского университета и королевским астрономом Ирландии. В течение ряда лет он возглавлял также Дублинскую астрономическую обсерваторию и читал лекции по астрономии.

В 1837 г. Гамильтон был избран президентом Ирландской академии наук. Научные заслуги его нашли широкое признание во всем мире. В частности, в 1838 г. он был избран членом-корреспондентом Петербургской академии наук.

В 1828 г. в «Известиях» Ирландской академии наук Гамильтон опубликовал одну из своих самых знаменитых работ — «Теорию систем лучей». Исследуя системы оптических лучей, он исходил прежде всего из практических запросов их применения в оптических приборах. В третьем добавлении к этому труду ученый на основании сложных математических вычислений предсказал существование нового, до тех пор неизвестного явления — внешней и внутренней конической рефракции в двухосных кристаллах. Открытие Гамильтона вызвало огромный интерес и впоследствии сравнивалось с открытием планеты Нептун на основе вычислений Леверье.

Руководствуясь идеей оптико-механической аналогии, усматривая ее прежде всего в единой математической форме законов движения лучей и материальных частиц, Гамильтон использует в механике так называемый принцип наименьшего действия. Применяя этот принцип к определенным явлениям, Гамильтон исходил из того, что для действительного, осуществляющегося движения тел величина, равная произведению энергии на время и названная им «действием», должна иметь некоторое минимальное значение. Несколько позже Гамильтона и независимо от него принцип наименьшего действия был разработан русским ученым М.В. Остроградским, который распространил его на значительно более широкий круг явлений. Этот принцип теперь справедливо называется принципом Гамильтона — Остроградского. Он оказался мощным математическим оружием физики и был широко использован в работах Максвелла, Гельмгольца, Умова, Эйнштейна, де Бройля, Шредингера и других ученых.

Перейдя к механике, Гамильтон показал значение в ней своего нового вариационного принципа, а его характеристическая функция для задач механики (функция Гамильтона Н) оказалась при довольно широких условиях совпадающей с энергией механической системы. Зная, как выражается функция Н через координаты и импульсы составляющих систему материальных точек, можно сразу составить дифференциальные уравнения, определяющие координаты и импульсы. Получающаяся система дифференциальных уравнений («канонические уравнения») равносильна системе уравнений движения, в частности — системе уравнений Лагранжа второго рода, но обладает некоторыми особыми свойствами, облегчающими ее исследование.

Наконец, Гамильтон связал свою каноническую систему дифференциальных уравнений первого порядка с соответствующим дифференциальным уравнением в частных производных, которому, как выяснилось, удовлетворяет его характеристическая функция Н. Получилась обширная теория. Она дала новую удобную форму уравнений движения, новый подход к проблеме их решения (интегрирования). Она вскрывала более полно и глубоко аналогии между механикой и оптикой, выявила новые возможности геометрической интерпретации, наконец, она вела к выявлению связи между волновыми и корпускулярными представлениями, но последнее достаточно полно раскрылось лишь через столетие.

Необходимо сказать, что описанная выше теория не была дана Гамильтоном в достаточно общем и законченном виде: он вел свои исследования, переходя к механике, преимущественно в предположении, что имеет дело с системой свободных материальных точе