Механика от античности до наших дней — страница 47 из 85

Кроме того, Остроградский ослабил ограничения на связи, всегда считавшиеся до него стационарными, и тем самым существенно обобщил проблему.

В 1850 г. Остроградский опубликовал еще один мемуар, содержащий важные результаты по математической теории уравнений движения, — «Об интегралах общих уравнений динамики» (представлен в 1848 г.). Он показал, что и в более общем случае, когда связи и силовая функция содержат время (этот случай был оставлен в стороне Гамильтоном и Якоби), уравнения движения также могут быть преобразованы в гамильтонову форму.

Одним из важных вопросов механики является задача интегрирования уравнений движения, которые составляют вариационный принцип. Разработка теории интегрирования канонических уравнений принадлежит Гамильтону, К. Якоби и Остроградскому.

Эта теория состоит из трех основных этапов. Прежде всего необходимо было найти наиболее простую возможную форму дифференциальных уравнений движения. Такой формой оказались канонические уравнения; они получили свое название благодаря замечательному свойству инвариантности относительно некоторых преобразований координат. Термины «канонические уравнения», «канонические преобразования» были введены Якоби.

Следующим этапом является установление общих законов подобных преобразований. Так была развита теория канонических преобразований и их инвариантов. Отсюда видно, что существует глубокая внутренняя связь между аналитической динамикой и общей теорией групп преобразований. Впоследствии эта связь была открыта норвежским математиком Софусом Ли (1842—1899), и вся теория приняла удивительно стройный и красивый вид: в механику вошли новые идеи, характерные для математики конца XIX в. Якоби показал, что существует такое каноническое преобразование, которое приводит исходные уравнения к новым, легко интегрируемым уравнениям. Таким образом, задача прямого интегрирования канонических уравнений заменяется другой математической задачей: найти вид соответствующего канонического преобразования. Наконец, остается задача интегрирования канонических уравнений. Оказалось, что интегрирование этих уравнений равносильно интегрированию уравнения в частных производных, так называемого уравнения Гамильтона — Якоби.

В разработку всей этой теории существенный вклад внес М.В. Остроградский. В исследованиях по уравнениям динамики он дал каноническую форму уравнений динамики и установил теоремы о характеристической функции, принимая связи системы зависящими от времени. В работах этого цикла независимо от Гамильтона и Якоби он развивает также и теорию того уравнения в частных производных, которое обычно называется уравнением Гамильтона — Якоби. Независимо от Гамильтона и Якоби Остроградский доказал, что задача определения интегралов канонических уравнений эквивалентна нахождению полного интеграла некоторого дифференциального уравнения в частных производных. Все искомые интегралы канонических уравнений можно найти дифференцированием полного интеграла уравнения в частных производных.

«По своей ясности, — писал Н.Е. Жуковский, — рассматриваемый мемуар Остроградского («Об интегралах общих уравнений динамики». — А. Г.) являлся по тогдашнему времени весьма ценным изложением теории интегрирования уравнений динамики и может с успехом служить для лекционных целей и в настоящее время»{179}.

Остроградский придавал большое значение изучению величин, инвариантных относительно преобразований координат. Он отмечает свойство инвариантности канонических уравнений и дает этому факту совершенно правильное объяснение: причина заключается в том, что само движение не зависит от выбора системы координат.

Работы Остроградского по динамике являются основополагающими. Их значение состоит еще в том, что они послужили источником для ряда дальнейших исследований по выяснению основ вариационных принципов механики.

Под влиянием работ Остроградского многие русские ученые внесли большой вклад в развитие вариационных принципов механики. В работах Н.Д. Брашмана, И.И. Сомова, М.И. Талызина, Ф.А. Слудского, Н.Е. Жуковского, Г.К. Суслова, Д.К. Бобылева и других ученых был решен комплекс вопросов о характере вариации в принципе наименьшего действия в форме Лагранжа и о методе вывода из него уравнений движения механики. Глубоко изучена была также строгая математическая форма самого принципа наименьшего действия и его связь с уравнениями движения. Выяснение этих вопросов было необходимо для того, чтобы принцип наименьшего действия стал не только безупречным основанием аналитической механики, но и мощным методом исследования в различных областях физики.

Действительно, роль принципа Гамильтона — Остроградского в дальнейшем развитии физико-математических наук оказалась весьма значительной. Теперь трудно указать такую область механики, физики, где мы не встретились бы в той или иной форме с применением принцип на Гамильтона — Остроградского.

Из других важных трудов Остроградского по механике следует отметить его исследование о принципе возможных перемещений «Общие соображения относительно моментов сил» (1834 г., опубликовано в 1838 г.). Эта работа значительно расширила область применения принципа возможных перемещений, распространила его на так называемые освобождающие (или неудерживающие) связи.

Исследования Остроградского по принципу возможных перемещений являются непосредственным продолжением работ Лагранжа и обобщением его идей. Так считал и сам Остроградский, писавший: «Лагранж не удовлетворился тем, что вывел следствия из принципа И. Бернулли, но расширил и обобщил самый принцип и приложил его к решению труднейших вопросов равновесия и движения систем. Затем вопрос сочли исчерпанным и полагали, что ничего нельзя уже прибавить к теориям, установленным Лагранжем. Однако принцип виртуальных скоростей еще шире, чем предполагал сам Лагранж, который, как и Бернулли, считал, что для равновесия системы необходимо, чтобы полный момент, т. е. сумма моментов всех сил, был равен нулю для всех перемещений, которым может быть подвержена система»{180}.

Под моментом сил Остроградский подразумевал работу сил. Итак, здесь ученый развивает мысль о распространении метода возможных перемещений на системы с освобождающими связями, поставив условием равновесия требование, чтобы полный момент сил был равен нулю или меньше нуля. Этот же метод был применен Остроградским для вывода дифференциальных уравнений движения, причем эти уравнения были выведены Остроградским и для случая голономных освобождающих связей, и для дифференциальных (неголономных) связей линейного вида.

В работах «О мгновенных перемещениях систем, подчиненных переменным условиям» (1838) и «О принципе виртуальных скоростей и о силе инерции» (1841 г., опубликована в 1842 г.) Остроградский дал строгое доказательство формулы, выражающей принцип возможных перемещений, для случая нестационарных связей. Во второй работе указаны некоторые неточности, допущенные Пуассоном в курсе механики.

Лагранж в «Аналитической механике» рассмотрел многие вопросы этой науки, но одна интересная задача теории удара была оставлена им в стороне; частный случай ее был изучен вскоре Л. Карно. В мемуаре «К общей теории удара» (1854 г., опубликован в 1857 г.) Остроградский исследовал удар систем в предположении, что возникающие в момент удара связи сохраняются и после него. Он распространил здесь принцип возможных перемещений на явление неупругого удара и получил основную формулу аналитической теории удара, из которой легко получается ряд теорем, решение упомянутой задачи, и в частности обобщение одной теоремы Карно. М.В. Остроградский читал лекции по аналитической механике. Курс, читанный им в Институте инженеров путей сообщения, был литографирован в 1834 г. По словам коллеги Остроградского, известного математика В.Я. Буняковского, выход этого сочинения ожидался с нетерпением. Позднее, в 1852 г., вышли в литографическом издании лекции по аналитической механике, читанные Остроградским в Главном педагогическом институте. Эти лекции Остроградского, составленные на основе классических работ Лагранжа, а также новейших работ Фурье (1768—1830), С. Пуассона (1781—1840), Гамильтона и самого лектора, имели большое значение для распространения физико-математических наук в России. Изложение Остроградского во многом оригинально. Он искал в механике наиболее простые и общие принципы, позволяющие доказывать ее теоремы изящно, кратко и просто.

Выдающийся советский ученый академик Алексей Николаевич Крылов в своем предисловии к новому изданию этих лекций говорил о богатстве их содержания и своеобразии изложения. В докладе Президиуму АН СССР Крылов писал: «Эта книга не только будет служить некоторым памятником знаменитому ученому, но принесет большую пользу как пособие для вузов и втузов».

Остроградскому принадлежат не только общие теоретические труды широкого охвата, но и работы, содержащие решения конкретных частных задач механики, возникших в технической практике того времени. Особого упоминания заслуживает серия его работ по баллистике, предпринятая по заданию русского артиллерийского ведомства. Плодом этих занятий явились следующие его мемуары в этой области: «Заметка о движении сферического снаряда в сопротивляющейся среде» и «Мемуар о движении сферического снаряда в воздухе» (1840 г., опубликован в 1841 г.), а также «Таблицы для облегчения вычисления траектории тела в сопротивляющейся среде» (1839 г., опубликовано в 1841 г.). В первых двух работах Остроградский исследовал актуальный для артиллерии того времени вопрос о движении центра тяжести, о вращении сферического снаряда, геометрический центр которого не совпадает с центром тяжести. Здесь был сделан существенный шаг вперед по сравнению с несколько более ранними исследованиями Пуассона, который изучил движение сферических снарядов в допущении, что эти два центра совпадают.

Третье упомянутое сочинение заключает в себе вычисленные Остроградским таблицы функции