Механика от античности до наших дней — страница 74 из 85

Под влиянием исследований пионеров ракетной техники в СССР уже в 20-х годах стали создаваться группы и организации по изучению различных вопросов реактивного движения. Было организовано Общество межпланетных сообщений.

В 1929 г. в Ленинграде была создана Газодинамическая лаборатория (ГДЛ). Особенно важное значение для развития механики переменной массы имели группы по изучению реактивного движения (ГИРД) в Москве и в Ленинграде, созданные в 1931 г. Центральным советом Осоавиахима СССР. В 1933 г. был организован Реактивный научно-исследовательский институт (РНИИ). В этих организациях начинали свою работу многие инженеры, конструкторы, ставшие впоследствии крупными теоретиками реактивного движения, выдающимися конструкторами космических кораблей.

В московской группе по изучению реактивного движения работал С.П. Королев (1906—1966), который впоследствии прославился как выдающийся конструктор и ученый в области ракетной и космической техники. В 1930 г. С.П. Королев окончил факультет аэромеханики Высшего технического училища и школу летчиков. Еще студентом он стал автором нескольких оригинальных конструкций.

В 1929 г. Королев на Всесоюзных планерных состязаниях выступает в качестве одного из конструкторов планера «Коктебель». В 1930 г. он спроектировал и построил планер «Красная звезда», на котором впервые в истории авиации выполнялись фигуры высшего пилотажа. В том же 1930 г. он построил легкомоторный самолет «СК-4» и сам совершил свой первый полет. В 1935 г. Королев принимал участие во Всесоюзном слете планеристов в качестве летчика и конструктора двухместного планера «СК-9», на котором им впоследствии был установлен жидкостный ракетный двигатель.

СЕРГЕЙ ПАВЛОВИЧ КОРОЛЕВ (1906-1966)

Советский ученый в области ракетной и космической техники. С.П. Королев внес неоценимый вклад в развитие мировой науки и техники в области космонавтики

Познакомившись с К.Э. Циолковским и его основополагающими трудами, С.П. Королев, благодаря своему могучему таланту и неиссякаемой энергии, внес огромный вклад в дело освоения космического пространства — вклад, значение которого трудно переоценить.

В 1934 г. С.П. Королев издал книгу «Ракетный полет в стратосфере», которая сыграла важную роль в развитии ракетной техники в то время. «Книжка разумная, содержательная и полезная», — писал о ней К.Э. Циолковский.

В годы Великой Отечественной войны Королев работал над установкой жидкостных ракетных ускорителей на истребителях и пикирующих бомбардировщиках, принимал участие в испытательных полетах.

Слава С.П. Королева, крупнейшего ученого и конструктора в области ракетной техники и исследования космического пространства, достигла своего апогея после войны. Мы рассмотрим его творчество этого периода в следующем разделе главы.

С оформлением организаций энтузиастов ракетного дела появилась потребность в публикации исследований в области реактивного движения.

Реактивная секция Стратосферного комитета Центрального совета Осоавиахима СССР начиная с 1935 г. стала издавать сборник «Реактивное движение», посвященный проблемам движения тел переменной массы, а также проблемам реактивного полета. Основное внимание уделялось исследованию вертикального движения ракет, движению точки переменной массы при различных гипотезах относительно отделения и присоединения частиц, динамике реактивного самолета. Так, например, В.П. Ветчинкин в работе «Вертикальное движение ракеты» (1935) исследовал вертикальное движение точки переменной массы в среде, сопротивление которой изменяется по квадратичному закону, а плотность среды изменяется с высотой. Для решения полученного движения ракеты был применен метод численного интегрирования. М.К. Тихонравов в работе «Формула Циолковского» (1936) проанализировал основное уравнение движения точки переменной массы при различных предположениях относительно характера отделения и присоединения частиц. Он показал, что изменение скорости точки, происходящее при отделении частиц, можно определить, применяя закон сохранения количества движения и закон сохранения кинетической энергии.

Интересные результаты в области механики переменных масс были получены при решении астрономических проблем. Здесь основным предметом исследований была задача двух тел. Г.Н. Дубошин в 1926—1930 гг. опубликовал серию статей «О форме траекторий в задаче о двух телах с переменными массами». Эта задача сводится к изучению интегро-дифференциального уравнения, решение которого выражается с помощью рядов, расположенных по степеням малого параметра. В.В. Степанов (1889—1950) в работе «О форме траекторий материальной точки в случае притяжения по закону Ньютона переменной массой» (1930) исследовал вопрос о форме орбиты точки постоянной массы, находящейся под действием переменной центральной массы. Он показал, что при некотором законе изменения массы притягивающей точки орбитой движущейся точки может быть любая кривая, обращенная вогнутостью к центру. А.С. Лапин в работе «Задача двух тел с переменными массами» (1944) исследовал случаи интегрируемости уравнений движения двух тел переменной массы, пользуясь методом замены переменных, введенным И.В. Мещерским. Таким образом, он свел задачу о движении точки переменной массы к задаче движения точки постоянной массы, воспользовавшись специальным прибором преобразования относительно радиуса-вектора и времени. Оказалось, что если массы взаимопритягивающихся по закону Ньютона материальных точек возрастают с течением времени, то задача о движении двух точек переменной массы сводится к изучению движения точки постоянной массы, притягивающейся по закону Ньютона и находящейся под действием силы сопротивления, равной произведению скорости на некоторую функцию времени.


ПОСЛЕВОЕННЫЙ ПЕРИОД

В годы Великой Отечественной войны работа советских механиков была подчинена главной цели — содействовать повышению боевой мощи вооруженных сил и решать самые насущные задачи, выдвигаемые промышленностью в условиях военного времени. Но сил хватало и на продолжение теоретических исследований во многих направлениях. Не удивительно, что сразу же после войны исследования по механике ведутся по всем прежним направлениям, только с еще большим размахом, а вскоре начинается разработка новых направлений.

В аналитической механике в послевоенный период усиленно развивалась теория неголономных систем — как общие вопросы, так и решение частных задач. По-прежнему много внимания уделялось гироскопии. В теории динамических систем перешли к исследованию вопросов такой общности, что это направление можно отнести скорее к математике, чем к механике. Здесь происходит тот закономерный переход к более высокой степени общности, который со временем приведет к конкретизации получаемых результатов — при их применении к решению более сложных практических проблем.

Теория колебаний (преимущественно нелинейных) стала обширной дисциплиной, новые успехи которой были достигнуты на пути дальнейшего развития и взаимного влияния асимптотических, топологических и функциональных методов. Проведенный в Киеве в 1961 г. Международный симпозиум по нелинейным колебаниям показал, что советская наука сохраняет здесь свое ведущее положение. Направление Н.М. Крылова и Н.Н. Боголюбова стало большой научной школой, значительные коллективы работают в Горьком и в Москве (школы Мандельштама, Папалекси, Андронова), заметный вклад вносят в нелинейную механику многочисленные исследователи других научных центров. Теория устойчивости по-прежнему занимает одно из первых мест по числу исследований и исследователей, занимающихся ее проблемами. В ней постепенно происходит переход от разработки общих методов к анализу сравнительно частных, но практически весьма важных задач, выдвигаемых смежными областями — теорией колебания и теорией регулирования.

Возможно, что со временем будет принята такая классификация наук, согласно которой теория регулирования не будет включена в механику. Однако эта теория очень близка к механике по своим методам, многое у нее заимствует, и поэтому пока нет оснований отделять ее от механики. Начиная с 40-х годов теория регулирования развивается в нарастающем темпе, что естественно в эпоху автоматизации производственных процессов и внедрения различных кибернетических устройств, следящих систем, систем с дистанционным управлением и т. д.

В теории деформируемых твердых тел, несмотря на широкое развитие всех прежних направлений, центр тяжести стал смещаться в сторону новых схем: упругопластическое, вязкопластическое состояние, явления упрочнения (наклеп), ползучесть, нелинейные упругопластические колебания, механика сыпучей среды и грунтов. В настоящее время эти направления в своей совокупности превосходят по числу посвященных им работ и численности занимающихся ими исследователей классические разделы теории упругости. Во всех этих направлениях шла работа и над принципиальными основами, и над решением частных задач.

В механике жидкостей и газов наблюдается сходный процесс. Необходимость учета сжимаемости среды при движениях с большими дозвуковыми, затем околозвуковыми и сверхзвуковыми скоростями, когда термодинамика процесса играет первостепенную роль, заставляет все больше усилий уделять газовой динамике — дисциплине, в начале века составлявшей небольшую главу механики, а теперь соперничающей по объему материала и размаху исследований с классической аэродинамикой. Изучаются движения в газообразной среде и с так называемыми гиперзвуковыми скоростями — скоростями космических кораблей и метеоров, когда надо принимать во внимание и диссоциацию молекул газа. В гидромеханике схема идеальной жидкости в двумерных стационарных задачах при современных возможностях математического аппарата представляется почти исчерпанной. Больше внимания привлекают нестационарные задачи плоского движения идеальной жидкости и трехмерные задачи, особенно механика вязкой (несжимаемой) жидкости. Статистические методы остаются основными в теории турбулентности, где еще предстоит решить ряд кардинальных проблем. Очень большое место занима