Металлы в живых организмах — страница 15 из 20

Ионы кальция содержатся в трубочках и пузырьках, окружающих одиночное мышечное волокно. Эта система трубочек и пузырьков, образованная тонкими мембранами, называется саркоплазматической сетью; она погружена в жидкую среду, в которой и находятся нити. Под влиянием нервного импульса изменяется проницаемость мембран, и ионы кальция, покидая саркоплазматическую сеть, выходят в окружающую жидкость. Предполагается, что ионы кальция, соединяясь с тропонином, влияют на положение нитевидной молекулы тропомиозина и переводят ее в такое положение, при котором активный комплекс АТФ — миозин может присоединиться к актину. По-видимому, регуляторное влияние ионов кальция распространяется с помощью нитей тропомиозина сразу на семь молекул актина.

После сокращения мышцы кальций очень быстро (доли секунды) удаляется из жидкости, вновь уходя в пузырьки саркоплазматической сети, и мышечные волокна расслабляются. Следовательно, механизм работы "линейного двигателя" заключается в попеременном вдвигании системы толстых миозиновых нитей в пространство между тонкими нитями актина, прикрепленными к белковым пластинкам, причем этот процесс регулируется ионами кальция, периодически появляющимися из саркоплазматической сети и снова уходящими в нее.

Ионы калия, содержание которого в мышце гораздо больше содержания кальция, способствуют превращению глобулярной формы актина в нитчатую — фибриллярную: в таком состоянии актин легче взаимодействует с миозином.

С этой точки зрения становится понятным, почему ионы калия усиливают сокращение мышцы сердца, почему они необходимы вообще для развития мышечной системы организма.

Ионы кальция — деятельные участники процесса свертывания крови. Нет надобности говорить, насколько важен этот процесс для сохранения жизни организма. Если бы кровь была лишена способности свертываться, ничтожная царапина представляла бы серьезную угрозу жизни. Но в нормальном организме кровотечение из небольших ран прекращается уже через 3-4 мин. На поврежденных тканях образуется плотный сгусток белка фибрина, закупоривающий рану. Исследование образования кровяного сгустка показало, что в его создании принимают участие сложные системы, включающие несколько белков и специальных ферментов. Не менее 13 факторов должны действовать согласованно для правильного хода всего процесса.

При повреждении сосуда кровеносной системы в кровь поступает белок тромбопластин. Ионы кальция принимают участие в действии этого белка на вещество, называемое протромбином (т. е. "источником тромбина"). Еще один белок (из класса глобулинов) ускоряет превращение протромбина в тромбин. Тромбин действует на фибриноген — высокомолекулярный белок (его молекулярная масса около 400000), молекулы которого имеют нитевидное строение. Фибриноген образуется в печени и является растворимым белком. Однако под влиянием тромбина он превращается сначала в мономерную форму, а затем полимеризуется, и получается нерастворимая форма фибрина — тот самый сгусток, который и прекращает кровотечение. В процессе образования нерастворимого фибрина опять участвуют ионы кальция.

Натрий и калий

Оба эти элемента находятся в первой группе системы Менделеева — они соседи и во многих отношениях похожи друг на друга. Активные, типичные металлы, атомы которых легко расстаются со своим единственным внешним электроном, переходя в ионное состояние, эти элементы образуют многочисленные соли, широко распространенные в природе. Однако более внимательное исследование обнаруживает, что биологические функции натрия и калия не одинаковы. Соли калия лучше поглощаются почвенным комплексом, поэтому в тканях растений оказывается относительно больше калия, тогда как соли натрия преобладают в морской воде. В биологических машинах оба эти иона иногда действуют совместно, иногда прямо противоположным образом.

Рис. 20. Распространение нервного импульса: а — ионы калия покидают нервное волокно быстрее, чем ионы натрия входят в него; б — диффузия ионов натрия усиливается; в — на внешней стороне нервного волокна возникает отрицательный заряд; г — исходное состояние восстанавливается, но отрицательный заряд появляется слева — в направлении распространения нервного импульса

В распространении по нерву электрических импульсов принимают участие оба иона. В покоящемся нерве, во внутренней его части, сосредоточен отрицательный заряд (рис. 20, а), а на внешней стороне — положительный; концентрация ионов калия больше концентрации ионов натрия внутри нерва. При раздражении изменяется проницаемость мембраны нервного волокна, и ионы натрия устремляются внутрь нерва быстрее, чем ионы калия успевают выходить оттуда (рис. 20, б). В результате на внешней стороне нервного волокна появляется отрицательный заряд (там не хватает катионов), а внутри нерва (где имеется теперь избыток катионов) возникает положительный заряд (рис. 20, в). На внешней стороне волокна начинает происходить диффузия ионов натрия от соседних участков к тому, который обеднен ионами этого металла. Энергичная диффузия ведет к появлению отрицательного заряда уже на соседних участках (рис. 20, г), а на исходном восстанавливается первоначальное состояние. Таким образом, состояние поляризации (плюс — внутри, минус — снаружи) передвинулось по нервному волокну. Дальше все процессы повторяются, и нервный импульс довольно быстро распространяется по всему нерву. Следовательно, механизм распространения электрического импульса по нерву обусловлен различной проницаемостью мембраны нервного волокна по отношению к ионам натрия и калия.

Вопрос о проницаемости мембран клеток для тех или иных веществ крайне важен. Прохождение вещества через биологическую мембрану далеко не всегда напоминает простую диффузию через пористую перегородку. Так, например, глюкоза и другие углеводы проходят через мембрану эритроцита с помощью специального переносчика, который проводит молекулы через мембрану. При этом должны выполняться специальные условия — молекула углевода должна иметь определенную форму, она должна быть изогнута так, чтобы ее контур приобрел очертания кресла, иначе перенос может не состояться. Концентрация углеводов во внешней среде больше, чем внутри эритроцита, поэтому такой перенос называют пассивным.

Бывают случаи, когда мембрана наглухо закрывается для определенных ионов: в частности, в митохондриях внутренняя мембрана вообще не пропускает ионов калия. Однако эти ионы попадают внутрь митохондрии, если в окружающей среде имеются антибиотики валиномицин или грамицидин. Валиномицин специализируется, главным образом, на ионах калия (может переносить и ионы рубидия и цезия), а грамицидин переносит, кроме калия, также ионы натрия, лития, рубидия и цезия.

Было выяснено, что молекулы таких проводников имеют форму баранки, радиус отверстия которой таков, что внутри баранки помещается ион калия, натрия или другого щелочного металла. Эти антибиотики назвали ионофорами ("носителями ионов"). На рис. 21 показаны схемы переноса ионов сквозь мембрану молекулами валиномицина и грамицидина. Весьма вероятно, что то токсическое действие, которое антибиотики оказывают на различные микроорганизмы, как раз и связано с тем, что в их присутствии мембраны начинают пропускать внутрь те ионы, которым быть там не полагается; это нарушает работу химических систем клетки микроорганизма и ведет к ее гибели или к серьезным расстройствам, прекращающим ее размножение.

Рис. 21. Схема работы переносчиков ионов — ионофоров: а — подвижный переносчик (валиномицин); б — перенос с помощью канала (грамицидин)

Существенную роль в биологических машинах играют активные переносы через мембраны (см. гл. 8). Возникает вопрос: откуда же черпается энергия, необходимая для активного переноса, и можно ли осуществить его без специального переносчика?

Что касается энергии, то в конечном счете она доставляется все теми же универсальными молекулами АТФ или креатинфосфатом, гидролиз которых сопровождается освобождением больших количеств энергии. А вот относительно переносчиков вопрос менее ясен, хотя несомненно, что без ионов металлов калия и натрия здесь не обойтись.

Концентрация различных веществ в клетке (белковых и минеральных) выше, чем в окружающей среде; по этой причине чаще всего клетка оказывается под угрозой чрезмерного проникновения в нее воды (в результате осмоса). Для того чтобы избавиться от этого, клетка выкачивает ионы натрия в окружающую среду и тем самым выравнивает осмотическое давление. По этой причине концентрация ионов натрия в клетке меньше, чем в среде. Здесь опять обнаруживается различие между натрием и калием. Удаляется натрий, и концентрация ионов калия оказывается относительно больше внутри клетки. Так, эритроцит содержит калия примерно в пять раз больше, чем натрия.

И в мышцах велико содержание калия: на 100 г сырой мышечной ткани калия содержится 366 мг, а натрия 65 мг. Калий в мышцах облегчает переход глобулярной формы актина в фибриллярную, которая и соединяется с миозином (см. выше).

Известны некоторые случаи, когда фермент, активируемый ионом калия, подавляется ионами натрия, и наоборот. Поэтому открытие фермента, для действия которого необходимы оба иона, привлекло внимание биохимиков. Фермент этот ускоряет гидролиз АТФ и называется (K + Na) АТФ-аза. Для понимания его роли и механизма действия надо опять обратиться к процессам переноса.

Как мы уже указывали, внутри клеток повышена концентрация ионов калия, а в окружающей клеточной среде относительно больше натрия. Выкачивание ионов натрия из клетки ведет к усиленному поступлению в клетку ионов калия, а также и других веществ (глюкозы, аминокислот). Ионы натрия и калия могут обмениваться по принципу "ион на ион", и тогда не возникает разности потенциалов по обе стороны клеточной мембраны. Но если внутри клетки оказывается больше ионов калия, чем оттуда ушло ионов натрия, возможно возникновение скачка потенциалов (около 100 мВ); система выкачивания натрия называется "натриевым насосом". Если при этом появляется разность потенциалов, то применяют термин "электрогенный натриевый насос".