Но вернемся к электронам, текущим от молекулы вещества Q. Эти электроны, теряя свою энергию, двигаются затем по целому ряду переносчиков, которые мы не будем подробно описывать, и попадают в другую часть хлорофильной системы, обозначенной цифрой I. Важнейшим итогом их путешествия по этим переносчикам (до системы I) является образование АТФ, т. е. вещества, богатого энергией.
Заметим, что символом Р700 обозначена на схеме особая молекула хлорофилла, выбрасывающая возбужденные электроны. Среди переносчиков имеются соединения железа — железосерусодержащие и медьсодержащие белки (обозначенные на схеме FeS, Z), а также соединения хиноидной структуры (например, Q и пластохиноны).
В хлорофилльной системе I электроны снова возбуждаются светом и, следовательно, переходят на более высокий энергетический уровень. Их поток через переносчик Z (FeS-белок) и ферредоксин переходит к НАДФ+ и при участии ионов Н+ превращает кофермент в восстановленную форму:
В хлорофилльной системе I электроны снова возбуждаются светом и, следовательно, переходят на более высокий энергетический уровень
В конце концов часть электронов может вернуться на путь, ведущий от переносчика Q к системе I, осуществив тем самым круговое движение электронов.
Итогом всей этой работы электронов, возбужденных светом, является, во-первых, образование АТФ, а во-вторых — получение НАДФ*Н за счет водорода воды. Оба соединения — и АТФ, и НАДФ*Н — необходимы для дальнейшей химической работы по созданию молекул углеводов. Назовем только основные этапы этих сложных реакций.
АТФ отдает энергию, способствуя образованию химически активного соединения углевода рибулозы — рибулозодифосфата (содержащего пять атомов углерода). Рибулозодифосфат, реагируя с диоксидом углерода, поступающего из внешней среды, превращается сначала в шестиуглеродное соединение, которое затем распадается на два трехуглеродных фрагмента — 3-фосфоглицерата:
Рибулозодифосфат, реагируя с диоксидом углерода, поступающего из внешней среды, превращается сначала в шестиуглеродное соединение, которое затем распадается на два трехуглеродных фрагмента — 3-фосфоглицерата
Это соединение превращается с помощью НАДФ*Н в диоксиацетонфосфат, который является сырьем для синтеза фосфатов фруктозы, глюкозы и затем крахмала.
Синтез только 2 моль диоксиацетонфосфата, из которых образуется одна молекула глюкозы, требует, чтобы в фотохимической системе было произведено 12 моль НАДФ*Н и 18 моль АТФ. Следующие стадии синтеза глюкозы нуждаются в дополнительных количествах НАДФ*Н и АТФ.
Таким образом, образующиеся при фотосинтезе глюкоза и крахмал аккумулируют ту энергию, которую кванты света передали хлорофиллу на первых стадиях фотосинтеза.
В современной науке моделирование фотосинтеза — искусственное создание такой химической системы, которая могла бы, поглощая свет, доставлять нам углеводы, синтезируя их из воды и диоксида углерода, — является одной из самых увлекательных задач. Физики умеют превращать энергию света в электрическую энергию. Остается заставить поток электронов служить химическим целям с таким же совершенством, с каким это происходит в природе.
Для фотосинтеза нужен не только хлорофилл, но и особые мембранные структуры, содержащие белок и ряд ферментов в соответствующем пространственном расположении. Только до тех пор, пока все части этой сложной системы работают согласованно, идет процесс образования органических веществ, запасающих энергию света. В связи с этим познание фотосинтеза оказалось не только химической, но и физической проблемой и потребовало решения многих вопросов, в частности вопроса о передаче энергии возбуждения. Выяснилось, что структуры, необходимые для фотосинтеза, похожи на митохондрии: в зеленых растениях это хлоропласта, у микроорганизмов, многие виды которых способны к фотосинтезу (сине-зеленые, пурпурные бактерии и др.), все необходимые ферменты размещены в клеточной мембране, а мембрана впячивается внутрь клетки, образуя мезосомы.
Эти важные факты говорят о том, что структурная организация: возникновение надмолекулярных структур — митохондрий, хлоропластов — есть необходимое условие сопряжения реакций, доставляющих энергию, и реакций, поглощающих ее. Так в природе осуществляется переход от процессов на молекулярном уровне к процессам в макромолекулярных организациях — клетках и многоклеточных системах, причем и само существование таких систем поддерживается энергетическим сопряжением.
Все эти структуры образовались постепенно, и хлорофилл не сразу появился на Земле.
В осадочных породах, начиная с кембрийского, были обнаружены порфирины, и, как думают ученые, именно они являются остатками древних носителей хлорофилла. Некоторые ученые считают, что хлорофилл совершает свою работу в живых системах вот уже 550 млн. лет.
Хлорофилл и сам был рожден светом. Возможно, как считает М. Кальвин, солнечная радиация, действуя на воду и углекислый газ, привела сначала к появлению муравьиной и щавелевой кислот. Щавелевая кислота Н2С2О4 содержит два атома углерода. При облучении таких двухуглеродных молекул часто образуются четырехуглеродные молекулы; в частности, четыре атома углерода содержатся в кислоте С4Н6O4, называемой янтарной. С другой стороны, прямыми опытами Бахадура, А. Г. Пасынского с сотрудниками и других ученых доказано, что ультрафиолетовая радиация, действуя на растворы нитратов и формальдегида, в которых содержатся соли железа, вызывает появление в растворах аминокислот; аминокислоты могут возникнуть и при действии электрических разрядов на смесь азота, углекислого газа и паров воды. Из янтарной кислоты и аминокислоты глицина, NH2CH2COOH, по-видимому, и образовались порфирины.
Они и были (по А. А. Красновскому) первичными аппаратами для использования энергии света. У наиболее древних видов бактерий — автотрофов — обнаружено наличие свободных порфиринов. Бактерии действовали в лишенной кислорода восстановительной атмосфере, которая была характерна для ранних периодов истории Земли, и содержали восстановленную форму порфирина. Однако свободные порфирины, в силу особенностей их спектра поглощения, не могут обеспечить достаточно полного использования видимой части солнечного излучения. Постепенно химическая эволюция усовершенствовала аппарат и привела к образованию хлорофилла; внедрение магния в структуру порфирина вызвало повышение активности, и, кроме того, магний укрепил связи хлорофилла с белком[8].
Фотосинтез в той его форме, которая приобрела особенно большое значение на Земле, совершается в зеленых частях растений и в водорослях. Трудно представить колоссальные масштабы деятельности зеленых водорослей, плавающих в морях и океанах. За один год они выделяют в атмосферу Земли 3,6*10 т кислорода. Это составляет около 90% всего кислорода, поступающего в атмосферу из океана и с поверхности листьев наземных растений. Следовательно, именно водоросли являются основным поставщиком кислорода. Именно они создают ту часть атмосферы, которая необходима для нашего существования. Наша жизнь неразрывно связана с "дыханием океана" и непрерывной деятельностью микроскопических носителей хлорофилла. К. А. Тимирязев в книге "Солнце, жизнь и хлорофилл" изложил результаты своих фундаментальных исследований в области фотосинтеза и указал, что фотосинтез — это процесс, от которого зависят все проявления жизни на нашей планете.
Развитие фотосинтетических аппаратов знаменовало собой начало совершенно нового периода в эволюции форм жизни на Земле. Появились новые виды живых существ, резко изменились условия питания, состав атмосферы — началось обогащение ее кислородом. Синтез органических веществ в растениях и водорослях обеспечил пищей гетеротрофные[9] организмы; из остатков растений под влиянием химических и биологических факторов начали образовываться массы ископаемых углей. Накопления таких отложений, как нефть и сланцы, — это тоже результат фотосинтетической деятельности.
Пожалуй, невозможно найти другой биохимический аппарат, который мог бы с таким совершенством использовать энергию излучения для химических целей, как это делает хлорофилл. Хлорофилл действительно является звеном между энергией Солнца и жизнью на Земле; этим определяется исключительная роль ионов магния в развитии форм жизни.
Лишь очень небольшая часть энергии, падающей на лист, используется им для целей фотосинтеза, эта часть не превышает 1%. И тем не менее общая продукция фотосинтеза на Земле колоссально велика. Биохимики называют фотосинтез самым крупным из химических процессов на Земле. Действительно, продукция фотосинтеза за год (1011 т органического углерода) в 100 раз превышает ежегодную мировую продукцию угольной и нефтяной промышленности; энергия, которую накапливают фотосинтетические машины в организмах, в 10000 раз превышает энергию воды, используемую в гидростанциях всего мира, и в 100 раз — энергию сгорания угля.
Эти числа, конечно, являются ориентировочными; но тем не менее их порядок дает вполне ясное представление о масштабах биологического процесса, который называется фотосинтезом.
Глава 11. Фиксация атмосферного азота и ионы металлов
Биологические машины по совершенству конструкции и точности работы превосходят многие технические устройства. Но особенно ярко преимущество организмов над механизмами, созданными человеком, проявилось в проблемах фиксации атмосферного азота и фотосинтеза.
В этой главе коснемся вопросов связывания азота. Уже в начале нашего века стало ясно, что запасов природной селитры — распространенного сырья для получения соединений азота (удобрений, лекарств, красителей) хватит приблизительно на 50 лет. Угроза настоящего азотного голода заставила химиков и инженеров тщательно изучать все реакции, в которые вступает свободный азот. Азот, состоящий из двухатомных молекул N