Можно ли осуществить передачу электрического сигнала на большие по сравнению с молекулой расстояния, располагая только прочными органическими соединениями, содержащими лишь ковалентные связи? Теория и опыт говорят нам, что внутри большой органической молекулы возможно движение π-электронов; π-электроны образуют в некоторых молекулах единую общую систему, но заменить ими те потоки электронов, которые появляются при протекании быстрых окислительно-восстановительных реакций, нельзя. Для этого необходим катализатор, содержащий металл.
Передачу нервного импульса также можно осуществить лишь с участием ионов металлов — натрия и калия.
Регулирование работы даже таких биологических катализаторов (некоторых ферментов), которые, казалось бы, не содержат прочно связанного металла, возможно только с помощью ионов металлов (кальция, магния, марганца и др., см. гл. 5).
Итак, биологические машины для своей согласованной работы нуждаются в металлах, и эти металлы должны входить в их состав в виде ионов.
За последние годы получено много данных о концентрации элементов в различных организмах и установлен несомненный факт накопления металлов в клетках простейших (одноклеточных организмов), извлекающих их из воды океанов и морей. Нельзя сказать, что биохимия может объяснить причины концентрирования ряда металлов в клетках, так как функции многих из них остаются неизвестными, но упорное извлечение организмами определенных элементов из морской воды делает вполне вероятным предположение, что живые клетки в какой-то степени нуждаются в них. В таблице 1 показано, насколько увеличивается в среднем концентрация ионов металлов в клетках простейших (эукариотных организмов) в результате их жизнедеятельности по сравнению с концентрацией этих же элементов в окружающей среде (морская вода).
Таблица 1. Накопление металлов в клетках простейших в морской воде
Цезий, барий, сурьма, висмут | в 10 раз
Цинк, никель, титан, хром, олово, кобальт, кадмий, серебро | в 100 раз
Марганец, железо, медь, теллур, свинец, торий, цирконий, лантан | в 1000 раз
Алюминий | в 10000 раз
В крови человека найдено 76 элементов, из них только 14 не являются металлами. Высказывались предположения (Л. Б. Меклер), что все вообще элементы необходимы для нормальной жизнедеятельности организма.
Исследования в этом направлении проводятся во многих лабораториях, но выводы приходится делать с большой осторожностью. Между степенью концентрирования элемента и его биологической функцией нет прямой и простой связи.
Значение для организма того или иного элемента совершенно не определяется его концентрацией в организме. Так, например, железо и кобальт, содержащиеся в организме в очень малых количествах, жизненно необходимы, и падение концентрации ниже допустимого ведет к тяжелейшим расстройствам. Мы поймем, почему это так, если вспомним, что катализаторы вообще могут производить значительные эффекты, действуя в, малых концентрациях; соединения железа и кобальта (а также ряда других металлов) выполняют в организмах главным образом каталитические функции. С другой стороны, даже те металлы, которые, казалось бы, не выполняют полезной работы в клетке и могут даже повредить ей (см. гл. 12), например свинец, концентрируется в ней в такой же мере, как и железо. Еще более странным кажется накопление алюминия, о функциях которого известно очень мало. Надо иметь в виду, что тяжелые металлы и металлы, образующие катионы с большим зарядом (алюминий), могут захватываться в течение жизни клетки и задерживаться в ней в силу того, что они прочно соединяются с белками.
Решающее значение имеют опыты, в которых из окружающей среды последовательно исключаются те или иные микроэлементы и отмечаются те из них, удаление которых тормозит или прекращает жизнедеятельность и развитие клеток. Такие эксперименты выполнены по отношению к ограниченному числу металлов. Поэтому мы опишем в дальнейшем именно те металлы, без которых клеткам и организму определенно не обойтись и функции которых достаточно известны.
Глава 2. Микроэлементы
Правильная оценка значения того или иного элемента в жизни организма стала возможной после многолетних наблюдений над состоянием животного и растительного мира в различных районах земного шара и кропотливой работы по сопоставлению данных наблюдений с результатами химических анализов почвы и почвенных вод в этих же районах.
В расширение кругозора наших знаний о роли элементов в биологических системах внесли большой вклад исследования акад. В. А. Вернадского, акад. А. П. Виноградова и их учеников. Было доказано, что между химическим составом почв и формами растений, развивающихся на них, имеется глубокая связь. Так, на почвах, богатых кальцием (карбонатные породы, известняки), развиваются растения характерных видов — кальцефильная флора; избыток цинка в почве ведет к появлению особых видов цветов (фиалки) и т. д.
Земную оболочку (литосферу, гидросферу и атмосферу, вместе взятые) называют биосферой, она является ареной жизненных процессов, потребляющих различные соединения элементов и создающих новые. Масштабы этого биогеохимического круговорота колоссальны — биосфера содержит 100 млрд. т живого вещества. Фотосинтетические процессы в течение года потребляют 175 млрд. т углерода, превращая его в различные органические соединения. Водоросли, губки, растения суши накапливают кремний — жесткая трава прибрежных мест, о которую так легко порезать пальцы, содержит много кремния; корненожки, кораллы собирают кальций — он необходим им для постройки прочных защитных оболочек; иглокожие концентрируют ванадий и т. д. После гибели всех этих организмов образуются скопления веществ, состав которых отражает особенности не только геохимических процессов (выветривания, растворения минералов), но и в не меньшей степени характер существования живых систем.
Поэтому природа даже в тех ее формах, которые, казалось бы, не имеют отношения к жизни, в действительности создана при активном участии живых организмов. Коралловые острова и коралловые рифы, тянущиеся на тысячи километров и достигающие в высоту 2-3 км, созданы живыми существами, построившими их в основном из карбоната кальция.
Раскрытие этих важных закономерностей и помогло понять данные наблюдений, относящиеся к вопросу о жизненной ценности того или иного элемента. На полях Австралии, которые ничем особенным не выделялись среди других пастбищ, скот часто заболевал анемией; было выяснено, что причиной является недостаток в почве соединений меди. Еще более тяжелая картина анемических расстройств у крупного рогатого скота наблюдалась в некоторых прибалтийских районах: сильное исхудание, слабость, малокровие сопровождали эту болезнь, приведшую к гибели многих животных. Тонкий химический анализ выявил дефицит в почвах этих районов элемента кобальта. Немногое было известно о роли этого металла в жизненных процессах. Тревожные сигналы из угрожаемых районов заставили попытаться изучить проблему более детально.
Больные анемией животные быстро поправлялись при введении в их корм солей кобальта. Надо было, очевидно, искать кобальт среди тех веществ, которые находятся в нормальном, здоровом организме. Громадная работа, о трудностях которой мы позже расскажем, увенчалась успехом. Было доказано, что кобальт входит в состав витамина B12, который, как и медь, необходим для процесса кроветворения. Результат этот имел далеко идущие последствия: удалось разработать методы надежного лечения опасной болезни — злокачественной анемии, поражавшей животных и человека и считавшейся до этого времени почти неизлечимой.
Недостаток меди и железа в почвах отражается и на состоянии растений — они заболевают хлорозом. В зеленых частях растения задерживается образование хлорофилла, снижается и процент витаминов.
Избыток некоторых элементов также представляет опасность. Известны заболевания животных, вызванные избыточным содержанием в почвах молибдена, селена, фтора и др. Все это указывает на то, что животный и растительный мир находится в постоянном взаимодействии с веществами литосферы (суши) и гидросферы (водная оболочка Земли).
А атмосфера? Имеет ли она отношение к жизни? Конечно! Мы ведь дышим кислородом атмосферы, а дыхание живых существ и работа многочисленных заводов обогащает атмосферу углекислым газом. Не все знают, что и появилась-то кислородная атмосфера на Земле именно вследствие деятельности фотосинтезирующих организмов, разлагавших воду и выделявших кислород. Лишь малая часть кислорода, по-видимому, возникла за счет разложения воды ультрафиолетовым излучением Солнца. Кислород, оказавшись в атмосфере, не только способствовал формированию микроорганизмов аэробного типа, но и окислял соединения металлов с низшими степенями окисления: соединения железа (II) превратились в соединения железа(III), оксиды марганца(II) образовали оксиды марганца (IV) и т. д. Живая и неживая природа постоянно влияют химически друг на друга, и было бы странным предполагать, что деятельные и хорошо растворимые соединения многих металлов не будут так или иначе вовлечены в жизненный круговорот.
На основе тех наблюдений, о которых шла речь выше, и начала постепенно развиваться отрасль науки, которую ныне называют бионеорганической химией. В ее задачи входило прежде всего выяснение роли каждого элемента в биологических процессах.
Сведения о функциях классических элементов жизни — углерода, кислорода, водорода, фосфора, серы, азота — достаточно подробны, их расширение составляет цель работы биохимиков. К области биохимии относят и данные о функциях йода и других галогенов. Поэтому на долю бионеорганической химии остаются главным образом металлы. Вспомним, что к металлам относится большинство элементов, и перспективы развития бионеорганической химии по этой причине разнообразны и значительны. Успехи, уже достигнутые на этом пути, в большой мере обусловлены введением в практику новых современных методов исследования, позволивших составить достаточно ясное представление о структуре биологических машин клетки и о месте, которое занимают в таких машинах ионы металлов.