Метазоа. Зарождение разума в животном мире — страница 43 из 52

делать они умели немногое. Несмотря на то что эволюция, протекавшая в море, обеспечила возможность манипулировать предметами, свободно двигаться и сформировать центральный мозг, ни одному морскому животному не довелось объединить в себе все эти свойства сразу. Такую комбинацию мы встречаем только у наземных позвоночных, особенно часто – в триасовом периоде и позже, когда три эти черты наконец слились воедино. Эта совокупность черт появилась независимо у двух крупных ветвей эволюционного древа – у первых динозавров и у млекопитающих. У уцелевших динозавров – птиц – она претерпела еще одну трансформацию, но ярче всего проявилась у приматов, подобных нам.

Наша ветка дерева

В предыдущих главах мы пытались рассмотреть во тьме веков общего предка человека и осьминога (а заодно человека и пчелы) и представляли себе кого-то вроде плоского червя, населявшего моря примерно 600 миллионов лет назад. Общего предка человека и птицы вообразить гораздо проще: у него было четыре конечности и отличное зрение и жил он на суше. Хорошей иллюстрацией здесь, пожалуй, будет коротколапая ящерица, ковылявшая по болоту чуть больше 300 миллионов лет назад. Как нам уже известно, две линии дальнейшего эволюционного ветвления, синапсиды (наша ветвь) и завропсиды (ветвь динозавров), различаются тем, как справились с выпавшими на их долю потрясениями. Если говорить в эволюционных терминах, синапсиды и завропсиды через некоторые изменения прошли параллельно, независимо приобретя ряд схожих черт, а в других отношениях остались очень разными. Как мы знаем, вертикально ориентированные тела, способные манипулировать объектами, появились на каждой линии отдельно. Другой важной чертой, независимо сформировавшейся у синапсидов и завропсидов, была эндотермия.

Говоря простыми словами, эндотермия – это теплокровие, внутренние процессы, поддерживающие стабильную температуру тела, которая обычно выше температуры окружающей среды. Теплокровие затратно, требует огромного количества энергии, но у него есть серьезные преимущества. Теплокровные животные могут выжить и сохранить активность в большем диапазоне сред обитания, а их мускулы сильнее и выносливей. Все те жизненно важные процессы, которые мы называли молекулярным штормом и над которыми ломали голову во второй главе, при разных температурах протекают по-разному, и обычно осуществляются успешнее, если температура тела выше температуры окружающей среды. Тело и мозг теплокровных – высокоэнергетическая система, потребляющая много кислорода.



Полноценная эндотермия развилась у млекопитающих и у птиц независимо друг от друга{231}. Однако теплокровие – не одна черта, а целый спектр характеристик. У млекопитающих и птиц приблизительно постоянная температура обеспечивается непрерывным регулированием метаболических процессов. Есть животные, поддерживающие свою температуру на уровне, лишь немного превышающем температуру окружающей среды, а есть такие, которые обогревают только часть тела. Такое поведение, как дрожь, одышка и поиск теплых или холодных зон, тоже может использоваться для регулирования внутреннего огня. Задолго до млекопитающих и динозавров первые шаги к эндотермии сделали, скорее всего, насекомые, и сейчас они используют целый спектр трюков, помогающих им регулировать температуру. Пчелы и мухи быстро бьют крылышками, согревая средний сегмент тельца, и часть этого тепла передается голове и мозгу. Скрупулезная работа лаборатории Саймона Лофлина в Кембридже показала: чем теплее глаза мухи, тем точнее и быстрее они реагируют на движение{232}. В тепле муха четче различает образы, которые на холоде кажутся ей размытыми.

В море теплокровие встречается редко{233}. Сегодня оно есть у той группы лучепёрых рыб, к которой принадлежат тунцы и меч-рыбы, а также у двух групп акул, в том числе у большой белой акулы. Лучепёрые выработали разные способы регулировать температуру тела, причем обзавелись они ими не за один раз. Тунец обогревает все тело; меченос – только глаза и мозг. Меч-рыбы добились практически того же эффекта, что и мухи: если глаза теплые, они лучше различают движение. Температура важна для когнитивной стороны разума – для обработки данных; она влияет как на межклеточные связи, так и на трудноуловимые глобальные динамические свойства мозга и, следовательно, должна иметь значение в плане опыта.

Возможно, когда-то давно некоторые хищные морские рептилии – ихтиозавры и им подобные – тоже были теплокровными{234}. Но подавляющее большинство рыб и все морские беспозвоночные (включая осьминогов) не способны поддерживать повышенную температуру тела. В море контролировать температуру труднее, потому что вода отводит тепло от тела гораздо лучше воздуха. Неразрывная связь насыщенных водой тел и внешней водной среды не помогает морским животным, а лишь усложняет их задачу – в этом плане, будучи жидкой системой, выгоднее существовать в воздушной среде. Температура внешней среды на суше обычно более изменчива, и это может представлять отдельную трудность, но обогревать тело тут проще.

Температура тела у динозавров – тема горячих споров{235}. Птицы теплокровны, но это не дает оснований предполагать, что и все динозавры были такими же. Эволюция птиц превратила их в суматошную высокоактивную форму жизни. Ряд исследователей утверждает, что активная жизнь, которую вели классические плотоядные динозавры, предполагает теплокровие, однако ученым пока не удалось прийти к согласию в вопросах о том, как давно динозавры развили эндотермию и насколько широко она была распространена. Кроме того, как нам уже известно, теплокровие – не тот вопрос, на который можно ответить просто «да» или просто «нет».

Если нас интересуют вопросы типа «Каким был опыт динозавров?» или «Каково это, быть динозавром?», то тогда птицы – наш лучший модельный организм. В конце концов, птицы и есть динозавры: сегодня вымерших динозавров мезозоя считают гораздо более близкими к птицам, чем еще пару десятилетий назад. Опыт классического вымершего динозавра мог быть подобен опыту крупной и не очень энергичной птицы.

Птицы – более близкий и понятный пример, но сюрпризы преподносит даже наша собственная ветвь эволюционного дерева. Один из них возвращает нас к теме шестой главы – интегрированности нервной системы, в частности двух половин мозга.

Как мы уже знаем, позвоночные относятся к билатеральным животным, придерживаются древней схемы строения тела, которой свойственна симметрия правой и левой стороны. У таких животных органы и части тела часто имеют пару с противоположной стороны, и мозга это тоже касается. Одна и та же информация не всегда доступна обоим полушариям мозга в той мере, как можно было бы ожидать.



Теперь, когда мы добрались до позвоночных, полезно будет иметь под рукой рисунок самых верхних ветвей «древа жизни», чтобы нам было на что опереться.

Латимериевые – наши ближайшие родственники из числа ныне живущих рыб. Слева от них располагается множество других рыб, таких как, например, представленный на схеме глубоководный удильщик из семейства лучепёрых. За морским удильщиком вне поля нашего зрения помещаются морские звезды, осьминоги, крабы и так далее. Справа от латимериевых находятся амфибии (пример – лягушки), а еще правее мы видим две крупные ветки, упоминавшиеся в предыдущем разделе, – это синапсиды и завропсиды.

Все эти позвоночные унаследовали строение мозга от рыб. У всех мозг помещается по центру – в голове, но у многих связи между правой и левой его половинами развиты слабо. Кроме того, полушария такого мозга используют разные «стили» обработки информации и имеют разную специализацию{236}. (Я коротко упоминал об этом в шестой главе.) У целого ряда животных левая половина мозга лучше распознает пищу, а правая – социальные отношения и угрозы. Ученые порой осторожно предполагают, что на самом деле эта разница глубже: левая половина мозга лучше справляется с сортировкой объектов по категориям, а правая успешнее обрабатывает отношения и связи. Джорджо Валлортигара и Люка Томмази закрывали цыплятам глаза окклюдером, побуждая их решать проблемы с помощью одной только левой, либо одной только правой половины мозга (или подключая мозг целиком, если оба глаза открыты){237}. Сначала цыплята исследовали экспериментальную площадку без окклюдеров на глазах в поисках пищи, которую они могли отыскать как по ориентиру, так и по общему расположению в пространстве. Затем цыплятам закрывали один глаз и ставили их в ситуацию, когда ориентир и пространственные ключи противоречили друг другу, поскольку ориентир был передвинут. Цыплята, использовавшие левый глаз, то есть правую половину мозга, игнорировали ориентир и опирались на пространственные ключи; цыплята, использовавшие правый глаз, то есть левую половину мозга, поступали ровно наоборот и искали пищу там, где теперь помещался ориентир.

Что удивительно, цыплята без окклюдера точно так же не обращали на ориентир никакого внимания. Похоже, при решении подобных задач у них доминирует правая половина мозга. Несмотря на то что достоверная информация доступна и левой его половине, она не может вставить ни слова, если не отстранить от управления правую.

Жабы демонстрируют довольно странное право-левостороннее поведение, несмотря на то что глаза у них расположены спереди головы, а не по бокам (это означает, что у них широкое бинокулярное поле зрения). Если жертва появляется в поле зрения жабы с левой стороны, откуда большая часть информации поступает в правую половину мозга, жаба, как правило, не нападает на жертву, пока та не переместится в другую половину зрительного поля, откуда информация поступает в левую половину мозга. Напомню, что левая половина мозга специализируется как раз на распознавании пищи. Если же в поле зрения жабы попадает не пища, а конкурирующая особь, ситуация, грубо говоря, развивается с точностью до наоборот.