Сотрудники лаборатории Ливи с тех пор также показали, что триклозан может запускать механизм, обеспечивающий устойчивость ко многим антибиотикам у кишечной палочки, сальмонелл, шигелл и других кишечных бактерий. Он делает это, заставляя сработать ключевой генетический переключатель – так называемый оперон устойчивости ко многим антибиотикам, или mar (multiple-antibiotic-resistance operon). Этот переключатель в свою очередь активирует целый набор из примерно шестидесяти различных генов, помогающих бактерии выжить, в том числе ген так называемого откачивающего насоса, который выводит из бактериальной клетки не только триклозан, но и ряд других антибиотиков. Аналогичный генетический “рвотный рефлекс” запускается, когда эти бактерии сталкиваются с дезинфицирующими средствами, такими как скипидар, или химическими консервантами, такими как хлорид бензалкония и другие четвертичные аммониевые соединения, широко используемые в глазных каплях, аэрозолях для носа и косметике. Следовательно, все эти хозяйственные товары могут способствовать выработке у бактерий устойчивости ко многим антибиотикам, отбирая тех мутантов, у которых трюмный насос для откачивания антибиотиков работает круглосуточно57. Проблему может усугубить то обстоятельство, что триклозан и его близкий химический родственник триклокарбан устойчиво сохраняются в очищенных стоках и за последние двадцать лет стали повсеместно встречаться в грунтовых и подземных водах, а также в пресноводных озерах и реках США58.
Стюарт Ливи и Абигайль Сэльерс отнюдь не одиноки в своем стремлении донести до людей данные исследований, показывающие, что за период чуть больше чем полвека массовое применение антибиотиков и других антибактериальных веществ преобразило экосистемы микробов, обитающих внутри нас. Например, исследователи из лондонского Стоматологического института Истмена недавно установили, что почти у всех младшеклассников в ротовой полости обитают бактерии, устойчивые к тетрациклину, несмотря на то что врачи вообще не прописывают тетрациклин детям младше двенадцати из-за того, что этот антибиотик портит цвет растущих зубов59.
Вопрос, ответа на который подобные исследования дать не могут: откуда произошли все эти опасные гены. В редких случаях новая разновидность устойчивости к антибиотикам возникает в результате случайных мутаций. Если повезет, такая мутация оказывается в состоянии изменить биохимическую мишень антибиотика так, что ему больше не за что будет ухватиться в бактериальной клетке. Простая мутация может также подействовать на переключатель, заставляющий откачивающий насос работать сверхурочно. Но сам откачивающий насос представляет собой вполне работоспособный биохимический аппарат, генетический чертеж которого выработался в ходе эволюции за сотни миллионов лет. То же относится и к сложным генам бактериальных ферментов, таких как бета-лактамаза, которая расщепляет, блокирует или иным способом нейтрализует десятки важных антибиотиков. Ясно, что эти механизмы устойчивости не могли выработаться в ходе эволюции за последние шестьдесят с чем-то лет. Так же ясно, что до внедрения антибиотиков они встречались редко, если вообще встречались, у бактерий, заселяющих или заражающих человеческий организм. Но оказалось, что они всегда были не дальше от нас, чем грязь, которую мы топчем ногами.
Устойчивость хоть лопатой загребай
В распоряжении Джерри Райта, главы Противомикробного исследовательского центра Университета Макмастера в Гамильтоне (провинция Онтарио, Канада), имеется оборудованная по последнему слову техники лаборатория, в которой есть все, что может понадобиться разработчику новых медикаментов, включая стоящий 15 миллионов долларов США аппарат для высокоскоростного скрининга, позволяющий одновременно проверять эффективность действия десятков потенциальных медикаментов на сотни бактериальных мишеней. Однако Райт убедился, что технологии XXI века бледнеют перед лицом изящных механизмов создания антибиотиков, которые можно наблюдать в комке грязи.
“Лучшим умам синтетической химии потребовались годы неимоверных усилий на получение даже в малых количествах таких структурно сложных антибиотиков, как ванкомицин, – объясняет он. – Но многие разновидности бактерий могут делать это с легкостью”. Особый интерес у Райта и его команды из Противомикробного центра вызывают стрептомицеты (Streptomyces) – обширный род почвенных бактерий, давно привлекавших внимание ученых своей способностью образовывать сложные колонии из длинных нитевидных клеток с напоминающими плодоножки стебельками, несущими споры. На определенном этапе эти производящие антибиотики бактерии пополнили наш медицинский арсенал дюжиной с лишним новых классов препаратов, в том числе стрептомицинами, тетрацикли-нами, неомицинами, эритромицинами и ванкомицинами.
В подземном мире микробов эти биохимические соединения, судя по всему, играют две разные роли. Результаты ряда исследований указывают на то, что при низких концентрациях они работают как сигнальные молекулы, позволяя бактериальным клеткам ощущать присутствие других клеток собственного и других видов и реагировать на него60. При более высоких концентрациях они могут играть более знакомую нам роль антибиотиков как ядов, оттесняя конкурентов в бесконечной толкотне сложных микробных сообществ, повсеместно, от пустынь нашей планеты до горных вершин, пропитывающих песок и почву.
Райт начал исследования генов стрептомицетов в середине девяностых. Цель исследований состояла как раз в том, чтобы узнать у этих бактерий некоторые трюки, полезные для разработки лекарственных препаратов. Райт и его аспирант Кистофер Маршалл сосредоточились в особенности на одном отрезке хромосомы, принадлежащей бактерии Streptomyces toyocaensis, о котором было известно, что он задействован в синтезе тейкопланина – антибиотика, близкородственного ванкомицину. Результатом этого исследования стал каталог из нескольких десятков генов, в числе которых был и нежданный подарок судьбы – набор генов самосохранения, защищающих клетки S. toyocaensis от их собственного яда.
Райта не удивило, что эти гены устойчивости оказались перемешаны у бактерии с генетическими чертежами аппаратуры для производства яда, позволяя микробу эффективно координировать выработку “противоядия”, не менее важную, чем синтез самого яда. Но чего Райт не ожидал, так это того, что кластер из пяти генов устойчивости, выделенный им и Маршаллом из данного обитателя грязи, казался до ужаса знакомым. Любой микробиолог, работавший с внутрибольничными супермикробами, такими как устойчивые к ванкомицину энтерококки, немедленно узнал бы эти гены: один – чтобы срезать места связывания антибиотика на грамположительной клеточной стенке, еще два – чтобы изготавливать устойчивые к антибиотику детали для заделывания возникающих при этом в стенке щелей, и последняя пара – регуляторные гены, позволяющие включать первые три в случае надобности, когда поблизости объявится ванкомицин или какой-либо из его химических родственников.
Райт и Маршалл воспользовались ДНК-зондами, чтобы выудить те же самые гены устойчивости у других стрептомицетов. Они обнаружили эти гены у выделяющего ванкомицин Streptomyces orientals, а также у полудюжины других штаммов и видов, производящих химически родственные ванкомицину антибиотики61. “Тут-то мы и хлопнули себя по лбу, – говорит Райт. – Если бы мы только провели такой эксперимент пятнадцать лет назад, когда началось широкое применение ванкомицина, мы бы узнали, какой именно механизм устойчивости придет вслед за этим антибиотиком в наши поликлиники и больницы”.
Учитывая повсеместное присутствие стрептомицетов в почве, Райт заинтересовался, что еще можно накопать в подобной грязи. Следующий этап его исследования был, по его словам, смехотворно прост для ученого, имеющего в своем распоряжении новейшую аппаратуру на много миллионов долларов: он был “весь выполнен на оборудовании, доступном и сотню лет назад”. Отправляясь на любую научную конференцию или просто в поход по лесам со своими детьми, он всегда привозил оттуда полиэтиленовый пакет на “молнии”, заполненный почвой, будь то засыпанный листьями лесной суглинок или усеянная окурками земля с клумбы перед конференц-центром. После чего он велел своим студентам и аспирантам проводить скрининг добытых образцов в поисках стрептомицетов и проверять устойчивость этих бактерий к набору из двадцати одного антибиотика разных классов. Студентов и аспирантов он тоже просил, когда те отправлялись домой на каникулы, набивать свои рюкзаки пластиковыми пакетами и привозить эти пакеты обратно с образцами почвы. За следующие два года в его лаборатории скопилась коллекция, где был и суглинок из прерий Саскачевана, и глина с автостоянок Торонто, и удобренная почва из садов на берегах Ниагары, и небольшой кусок Канадских Скалистых гор. Младший брат Райта, работающий полицейским в глуши, на границе Онтарио и Манитобы, прислал ему даже оттаявший образец мерзлой почвы с северного фронтира. “У нас была грязь со всей страны, от Ванкувера до Галифакса”, – говорит Райт.
Студентки Ванесса Д’Коста и Кэтрин Макгран выполнили непростую лабораторную работу по выделению нитевидных спорообразующих стрептомицетов из накопленных образцов почвы. Они получили коллекцию из почти пятисот штаммов и видов, в том числе никогда ранее не выделявшихся. Самый впечатляющий результат состоял в том, что все эти микроорганизмы оказались устойчивыми, причем не только к своим собственным характерным антибиотикам, но и ко многим другим. Все они без исключения могли переваривать, деактивировать, выключать, выводить из клетки или каким-то иным способом нейтрализовать многие антибиотики. В среднем каждый из этих стрептомицетов проявлял устойчивость к семи или восьми антибиотикам, а многие могли устоять против четырнадцати или пятнадцати. В ходе всего исследования была обнаружена устойчивость к каждому из двадцати одного проверенного антибиотика, в число которых входили и такие давние стандартные препараты, как тетрациклин и эритромицин, и такие многообещающие новые лекарства, как синерцид, укротитель